Python and R for the Modern Data Scientist
The Best of Both Worlds

Early Release
RAW & UNEDITED

Rick J. Scavitetta & Boyan Angelov
Part I. Discovery of a new language

To get things started, we’ll review the history of both Python and R. By comparing and contrasting these origin stories, you’ll better appreciate the current state of each language in the Data Science landscape. If you want to get started with coding, feel free skip ahead to Part II.
Python and R for the Modern Data Scientist

The Best of Both Worlds

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Rick J. Scavetta and Boyan Angelov
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views. While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-492-09340-4
Preface

Why we wrote this book

We want to show you why being more aware, informed, and deliberate about your tools is an optimal strategy for increased productivity. With this goal in mind, we didn’t write a bilingual dictionary (well, not only, you’ll find that handy resource in Appendix A). On-going discussions about Python vs. R (the so-called “language wars”) have long since ceased to be productive. It recalls, for us, Maslow’s hammer: “if all you have is a hammer, everything looks like a nail”. It’s a fantasy world-view set in absolutes, where tools offer all-encompassing solutions. Real-world situations are context-dependent, and a craftsperson knows that tools should be chosen appropriately. We aim to showcase a new way of working by taking advantage of all the great data science tools available. Thus we aim to develop both how the modern data scientist thinks and works.

We chose the word modern in the title not just to signify novelty in our approach. It allows us to take a more nuanced stance in how we discuss our tools. What do we mean by modern data science? Modern data science is:

- **Collective.** It does not exist in isolation. It’s integrated into wider networks, such as a team or organization. We avoid jargon when it creates barriers and embrace it when it builds bridges (see “Technical interactions”, below).

- **Simple.** We aim to reduce unnecessary complexity in our methods, code & communications.

- **Accessible.** It’s an open design process that can be evaluated, understood and optimized.

- **Generalizable.** Its fundamental tools and concepts are applicable to many domains.

- **Out-ward looking.** It incorporates, is informed and influenced by
developments in other fields.

- **Ethical** and **honest**. It’s people-oriented. It takes best practices for ethical work, as well as a broader view of its consequences, for communities and society, into account. We avoid hype, fads, and trends that only serve short-term gains.

However the actual job description of a *data scientist* evolves in the coming years, we can expect that these timeless principles will provide a strong foundation.

Technical interactions

Accepting that the world is more extensive, more diverse, and more complex than any single tool can serve presents a challenge that is best addressed directly and early.

This broadened perspective results in an increase in *technical interactions*. We must consider the programming language, packages, naming conventions, project file architecture, integrated development environments (IDEs), text editors, and on and on that will best suit the situation. Diversity gives rise to complexity and confusion.

The more diverse our ecosystem becomes, the more important it is to consider whether our choices act as *bridges* or *barriers*. We must always strive to make choices that build bridges with our colleagues and communities and avoid those that build barriers that isolate us and make us inflexible. There is plenty of room to contain all the diversity of choices we’ll encounter. The challenge in each situation is to make choices that balance personal preference and communal accessibility.

This challenge is found in all technical interactions. Aside from tool choice (a “hard” skill), it also includes communication (a “soft” skill). The content, style, and medium of communication, to name just a few considerations, also act as bridges or barriers to a specific audience.

Becoming bilingual in both Python and R is a step towards building bridges among members of the wider data science community.
Who this book is for

This book aims at data scientists at the intermediate stage of their careers. As such, it doesn’t attempt to teach data science. Nonetheless, early-career data scientists will also benefit from this book by learning what’s possible in a modern data science context before committing to any topic, tool, or language.

Our goal is to bridge the gap between the Python and R communities. We want to move away from a tribal, “us vs. them” mentality and towards a unified, productive community. Thus, this book is for those data scientists who see the benefit of expanding their skillset and thereby their perspectives and the value that their work can add to all variety of data science projects.

It’s negligent to ignore the powerful tools available to us. We strive to be open to new, productive ways of achieving our programming goals and encourage our colleagues to get out of their comfort zone.

In addition, Part I and Appendix A also serve as a useful reference for those moments when you just need to quickly map something familiar in one language onto the other.

Prerequisites

To obtain the best value from this book, we assume the reader is familiar with at least one of the main programming languages in data science, Python and R. A reader with knowledge of a closely related one, such as Julia or Ruby, can also derive good value.

Basic familiarity with general areas of data science work, such as data munging, data visualization and machine learning is beneficial, but not necessary, to appreciate the examples, workflow scenarios and case study.
How this book is organized

We’ve organized this book as if we’re learning a second spoken language as an adult.

In **Part I** we begin by going back in time to the origins of the two languages and then showing how that has influenced the current state by covering key breakthroughs. If you want to get right into the languages, skip straight to **Part II**.

In our analogy with spoken languages this helps provide a bit of context as to why there are quirks such as irregular verbs and plural endings. Etymology¹ is interesting and helps you gain an appreciation of a language, like the seemingly endless forms of plural nouns in German, but it’s certainly not essential for speaking.

Part II provides a deeper dive into the dialects of both languages, by offering a mirrored perspective. First we will cover how a Python user should approach work with R, and then the other way around. Not only will this expand your skill set, but also your way of thinking as you appreciate how each language operates.

In this part, we’ll treat each language separately as we start to become bilingual. Just like becoming bilingual in a spoken language, we need to resist two defeating urges. The first urge is to point out how much more straightforward, or more elegant, or in some way “better”, something is in our mother tongue. Congratulations to you, but that’s not the point of learning a new language, is it? We’re going to learn each language in its own right. Although we’ll point out comparisons as we go along, they’ll help us deal with our native-language baggage.

The second urge is to constantly try to interpret *literally* and *word-for-word* between two languages. This prevents us from *thinking* (or even *dreaming*) in the new language and sometimes it’s just not possible! Examples I like to use are phrasing such as *das schmeckt mir* in German, or *ho fame* in Italian which translate literally very poorly as *that tastes to me* (“That tastes good”) and *I have hunger* (“I’m hungry”). The point is, different languages allow for different constructs. This gives us new tools to work with and new ways to think, once we realize that we can’t map everything 1-to-1 onto our previous knowledge. Think
of these chapters as our first step to mapping your knowledge of one language onto the other.

Part III covers the modern context of language applications. This includes a review of the broad ecosystem of open-source packages as well as the variety of workflow-specific methods. This part will demonstrate when one language is preferred and why, although they’ll still be separate languages at this point. This will help you to decide which language to use for parts of a large data science project.

In spoken languages, *lost in translation* is a real thing. Some things just work better in one language. In German, *mir ist heiß* and *ich bin heiß* are both *I’m hot* in English; but a German-speaker will distinguish hotness from the weather versus physique. Other words like *Schadenfreude*, a compound word from “Schaden” (damage) and “Freude” (pleasure) meaning to take pleasure in someone’s difficulties, or *Kummerspeck*, a compound word from “Kummer” (greif) and “Speck” (bacon) referring to the weight gained due to emotional eating, are just so perfect there’s no use in translating them.

Part IV details the modern interfaces that exist between the languages. First, we became bilingual, using each language in isolation. Then, we identified how to choose one language over another. Now, we’ll explore tools that take us from separate and interconnected Python and R scripts to single scripts that weave the two languages together in a single workflow.

The real fun starts when you’re not just bilingual, but working within a bilingual community. Not only can you communicate in each language independently, but you can also combine them in novel ways that only other bilingual speakers will appreciate and understand. Bilingualism doesn’t just provide access to a new community, but creates in itself a new community. For purists, this is pure torture, but I hope we’ve moved beyond that. Bilinguals can appreciate the warning “The *Ordnungsamt* is monitoring *Bergmannkiez* today”. Ideally you’re not substituting words because you’ve forgotten them, but because it’s the best choice for the situation. There’s no great translation of *Orgnungsamt* (regulatory agency?) and Bergmannkiez is a neighborhood in Berlin that shouldn’t be translated anyways. Sometimes words in one language more easily convey a message, like *Mundschutzpflicht*, the obligatory wearing of face masks during the Coronavirus pandemic.
Finally, Chapter 7 consists of a case study that will outline how a modern data science project can be implemented based on the material covered in this book. Here, we’ll see all the previous sections come together in one workflow.

Let’s talk

The field of data science is continuously evolving, and we hope that this book will help you navigate easily between Python & R. We’re excited to hear what you think, so let us know how your work has changed! You can contact us via the companion website for the book, https://moderndata.design/. There you’ll find updated extra content and a handy Python/R bilingual cheat sheet.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by context.

TIP

This element signifies a tip or suggestion.
Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at https://github.com/moderndatadesign/PyR4MDS.

If you have a technical question or a problem using the code examples, please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: "Book Title by Some Author (O’Reilly). Copyright 2012 Some Copyright Holder, 978-0-596-xxxx-xx.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
NOTE
For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://www.oreilly.com/catalog/catalogpage.

Email bookquestions@oreilly.com to comment or ask technical questions about this book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Acknowledgments

To my parents for giving me the best possible start in life. To my wife for being my rock. To my children, for having the brightest dreams of the future.

—Boyan Angelov

1 The study of word origins and meanings.
Chapter 1. In the Beginning

Rick J. Scavetta
Boyan Angelov

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

We would like to begin with a great first sentence, like “It was the best of times, it was the worst of times…” but honestly, it’s just the best of times — Data Science is flourishing! As it continues to mature, it has begun to splinter into niche topics, as many disciplines do over time. This maturity is the result of a long journey that began in the early days of scientific computing. It’s our belief that knowing some of Python & R’s origin stories will help you to appreciate how they differ in today’s environment, and thus, how to get the most out of them.

We’re not going to pretend to be science historians, that niche group of academics who trace the circumstances of great discoveries and personalities. What we can do is offer a highlight reel of where Python and R come from and how that lead us to our current situation.

The origins of R

Whenever I think about R, I’m reminded of FUBU, a street wear company founded back in the 90s. The name is an acronym that I immediately fell in love with: For Us, By Us. FUBU meant community, it meant understanding the needs and desires of your people and making sure you served them well. \textit{R is FUBU}.\footnote{By the end of this chapter, I’m sure you’ll feel the same way. Once we acknowledge that R is FUBU, it starts to make a lot more sense.}

We can trace the origins of R right back to the now legendary Bell Laboratories
in New Jersey. In 1976, development of the statistical programming language S was being spearheaded by John Chambers. A year later Chambers published _Computational methods for data analysis_ and his colleague John Tukey, also at Bell Laboratories, published _Exploratory Data Analysis_. In 1983, Chambers published _Graphical methods for data analysis_. These books provided the framework to develop a computational system that would not only allow a statistician to explore, understand and analyze their data, but also to communicate their results. We’re talking about an all-star FUBU line-up here! Coauthors of Chambers included both Tukey’s cousin Paul A. Tukey and William Cleveland. Cleveland’s empirical experiments on perception, summarized in two insightful books, continue to inform the broader field of data visualization to this day. Among their many contributions to scientific computing and statistics, Tukey developed novel visualizations, like the oft mis-understood box & whiskers plot and Cleveland developed the LOESS method for non-parametric smoothing.

We begin with S since it laid the foundations for what would eventually become R. The nuggets of information in the previous paragraph tell us quite a bit about S’s — and R’s — foundations. First, statisticians are very literal people (S, get it?). This is pretty a helpful trait. Second, statisticians wanted a FUBU programming language specializing in data analysis. They weren’t interested in making a generalist programming language or an operating system. Third, these early books on computational statistics and visualization are, simply put, stunning examples of pedagogical beauty and precise exposition\(^2\). They have aged surprisingly well, despite the obviously dated technology. I’d argue that these books planted the seed for how statisticians, and the R community in particular, approached technical communication in an open, clear and inclusive manner. This, I believe, is an outstanding and distinctive hallmark of the R community that has deep roots. Fourth, the early emphasis on _graphical methods_ tells us that S was already concerned with flexible and efficient _data visualizations_, necessary for both understanding data and communicating results. So S was about getting the most important things done as easily as possible, and in a true FUBU way.

The original distribution of S ran on Unix and was available for free. Eventually, S became licensed under an implementation titled S-PLUS. This prompted another open-source and free implementation of S by Ross Ihaka and Robert
Gentleman at the University of Auckland in 1991. They called this implementation R, for the initials of their first names, as a play on the name S, and in keeping with the tradition of naming programming languages using a single letter. The first official stable beta release of R v1.0.0 was available on 29 February 2000. In the intervening years two important developments occurred. First, CRAN, the Comprehensive R Archive Network, was established to host and archive R packages on mirrored servers. Second, the R Core Team was also established. This group of volunteers (which currently consists of 20 members) implement base R, including documentation, builds, tests and releases, plus the infrastructure that makes it all possible. Notably, some of the original members are still involved, including John Chambers, Ross Ihaka and Robert Gentleman.

A lot has happened since R v1.0.0 in 2000, but the story so far should already give you an idea of R’s unique background as a FUBU statistical computing tool. Before we continue with R’s story, let’s take a look at Python.

The origins of Python

In 1991, as Ross Ihaka and Robert Gentleman began working on what would become R, Guido van Rossum, a Dutch programmer, released Python. Python’s core vision is really that of one person who set out to address common computing problems at the time. Indeed, van Rossum was lovingly referred to as the benevolent dictator for life (BDFL) for years, a title he gave up when he stepped down from Python’s Steering Council in 2018.

We saw how S arose out of the need for statisticians to perform data analysis, and how R arose from the need for an open-source implementation, so what problem was addressed by Python? Well, it wasn’t data analysis — that came much later. When Python came on the scene, C and C++, two low-level programming languages, were popular. Python slowly emerged as an interpreted, high-level alternative, in particular after Python v2 was released in 2000 (the same year R v1.0.0 was released). Python was written with the explicit purpose to be first-and-foremost an easy-to-use and learn, widely-adopted programming language with simple syntax. And it has succeeded in this role very well!
This is why you’ll notice that, in contrast to R, Python is everywhere and is incredibly versatile. You’ll see it in web development, gaming, system administration, desktop applications, data science, and so on. To be sure, R is capable of much more than data analysis, but remember, R is FUBU. If R is FUBU, Python is a Swiss army knife. It’s everywhere and everyone has one, but even though it has many tools, most people just use a single tool on a regular basis. Although data scientists using Python work in a large and varied landscape, they tend to find their niche and specialize in the packages and workflows required for their work instead of exploiting all facets of this generalist language.

Python’s wide-spread popularity within Data Science is not entirely due to its data science capabilities. I would posit that Python entered data science by partly riding on the back of existing uses as a general purpose language. After all, getting your foot in the door is half-way inside. Analysts and data scientists would have had an easier time sharing and implementing scripts with colleagues involved in system administration and web development because they already knew how to work with Python scripts. This played an important role in Python’s wide-spread adoption. Python was well-suited to take advantage of high-performance computing and efficiently implement deep learning algorithms. R was, and perhaps still is, a niche and somewhat foreign language that the wider computing world didn’t really get.

Although Python v2 was released in 2000, a widely-adopted package for handling array data didn’t take root until 2005, with the release of NumPy. At this time, SciPy, a package that, since 2001, provided fundamental algorithms for data science (think optimization, integration, differential equations, etc.), began relying on NumPy data structures. SciPy also provides specialized data structures such as k-dimensional trees.

Once the issue of a standard package for core data structures and algorithms was settled, Python began it’s ascent into wide-spread use in scientific computing. The low-level NumPy and SciPy packages laid the foundation for high-level packages like pandas in 2009, providing tools for data manipulation and data structures like DataFrames. This is sometimes termed the pyData stack and it’s when the ball really got rolling.
The language war begins

The early 2000s set the stage for what some would later refer to as the *language wars*. As the pyData stack started to take shape, milestones in both Python and R began to heat things up. Four stand out in particular.

First, in 2002, **BioConductor** was established as a new R package repository and framework for handling the burgeoning (read absolute explosion of) biological data in its myriad forms. Until this point, Bioinformaticians relied on tools like MatLab and Perl (along with classic command line tools and some manual web-interface tools). MatLab is still favoured in specific disciplines, like Neuroscience. However, Perl has been mostly be superseded by **BioConductor**. **BioConductor**’s impact on bioinformatics is hard to overstate. Not only did it provide a repository of packages for dealing with remote genetic sequence databases, expression data, microarrays, and so on, but it also provided new data structures to handle genetic sequences. **BioConductor** continues to expand and is deeply embedded within the bioinformatics community.

Second, in 2006 the **IPython** package was released. This was a groundbreaking way to work on Python in an interactive notebook environment. Following various grants beginning in 2012, **IPython** eventually matured into the **Jupyter Project** in 2014, which now encompasses the JupyterLab IDE. Users often forget that Jupyter is short for “Julia, Python and R” because it’s very Python-centric. Notebooks have become a dominant way of doing data science in Python and in 2018 Google released **Google Colab**, a free online notebook tool. We’ll dig into this in Chapter 3.

Third, in 2007, Hadley Wickham published his PhD thesis, which consisted of two R packages which would fundamentally change the R landscape. The first, **reshape**, laid the foundations for what would later become formalized as the **Tidyverse** (more on this later). Although **reshape** has long since been retired, it was the first glimpse into understanding how data structure influences how we think about and work with our data. The second, **ggplot2**, is an implementation of the seminal book by Leland Wilkinson, “The Grammar of Graphics”, and provided intuitive, high-level plotting, that greatly simplified previously existing tools in R (more on this in Chapter 5).
Finally, Python v3 was released in 2008. For years the question persisted as to which version of Python to use, v2 or v3. That’s because Python v3 is backward-incompatible. Luckily, this has been resolved for you since Python v2 was retired in 2020. Surprisingly, you can still buy a new Mac Book Pro after that date with Python 2 pre-installed, since legacy scripts still rely on it. So Python 2 lives on still.

The battle for data science dominance

By this point both Python and R had capable tools for a wide variety of data science applications. As the so-called “language wars” continued, other key developments saw each language find its niche.

Both Python and R were wrapped up in specific builds. For Python this was the Anaconda distribution which is still in popular use (see Chapter 3). For R, Revolution Analytics, a data science software developer, produced Revolution R Open. Although their R build was never widely adopted by the community, the company was acquired by Microsoft, signalling strong corporate support of the R language.

In 2011, the Python community foresaw the boom in machine learning with the release of the scikit-learn package. In 2016, this was followed by the release of both tensorflow and keras for deep learning, also with a healthy dose of corporate support. This also highlights Python’s strength as a high-level interpreter sitting on top of high-performance platforms. For example, you’ll find AWS lambda for massive highly-concurrent programming, Numba for high-performance computing, and the aforementioned TensorFlow for highly optimized C++. With its wide-spread adoption outside of data science, it’s no surprise that Python gained a reputation for deploying models in a way that R could not.

2011 also saw the release of RStudio IDE by the eponymous company and over the next few years the R community began to converge on this tool. At this point, to use R is, in many regards, to use RStudio. The influence RStudio has on promoting R as a programming language suitable for a wide variety of data-centric uses is also important to note.
While all of this was happening, a growing segment of the R community began to move towards a suite of packages, many of which were authored or spearheaded by Hadley Wickham, that begin to reframe and simplify typical data workflows. Much of what these packages did was to standardize R function syntax, as well as input and output data storage structures. Eventually the suite of packages began to be referred to colloquially as the “Hadleyverse”. In a keynote speech at the UseR! 2016 conference at Stanford University, Wickham did away with this, igniting digital flames to burn up his name and coining the term “Tidyverse”. Since joining RStudio the company has been actively developing and promoting the Tidyverse ecosystem which has arguably become the dominant dialect in R. We’ll explore this in more depth in Chapter 2.

We can imagine that R contains at least 2 “paradigms”, or “dialects”. They can be mixed, but each has its own distinct flavor. Base R\(^3\) is what most R has been and, probably, still is. Tidyverse re-imagines base R in a broad all-encompassing universe of packages and functions that play well together, often relying on piping and has a preference for data frames. I would argue that BioConductor provides yet another dialect, which is focused on a specific discipline, bioinformatics. You’ll no doubt find that some large packages may contain enough idiosyncrasies that you may consider them a dialect in their own right, but let’s not go down that rabbit hole. R is now at the threshold where some users know (or are taught) only the Tidyverse way of doing things. The distinction between base and Tidyverse R may seem trivial, but I have seen many new R learners struggle to make sense of why the Tidyverse exists. This is partly because years of base R code is still in active use and can’t be ignored. Although Tidyverse advocates argue that these packages make life much easier for the beginner, competing dialects can cause unnecessary confusion.

We can also imagine that Python contains distinct dialects. The vanilla installation of Python is the bare-bones installation, and operates differently to an environment that has imported the pyData stack. For the most part data scientists operate within the pyData stack, so there’s less confusion between dialects.

A convergence on cooperation and community-
For a time, it seemed that the prevailing attitude in the language wars was an *Us versus Them* mentality. A look of disdain glancing at a person’s computer screen. It seemed like either Python or R would eventually disappear from the data science landscape. Hello monoculture! Some data scientists are still rooting for this, but we’re guessing you’re not one of them. And there was also a time when it seemed like Python and R were trying to mimic each other, just porting workflows so that language didn’t matter. Luckily those endeavors have not come to fruition. Both Python and R have unique strengths; trying to imitate each other seems to miss that point.

Today many data scientists in the Python and R communities recognize that both languages are outstanding, useful and complementary. To return to a key point in the preface, the data science community has converged onto a point of cooperation and community-building — to the benefit of everyone involved.

We’re ready for a new community of bilingual data scientists. The challenge is that many users of one language don’t quite know how they are complementary or when to use which language. There have been a few solutions over the years, but we’ll get into that in Part IV.

Final thoughts

At this point you should have a good idea of where we are in 2021 and how we got here. In the next part we’ll introduce each group of users to a new language.

One last note: Python users refer to themselves as Pythonistas, which is a really cool name! There’s no real equivalent in R, and they also don’t get a really cool animal, but that’s life when you’re a single letter language. R users are typically called… wait for it … useRs! (exclamation optional) Indeed, the official, annual conference is called useR! (exclamation obligatory) and the publisher Springer has an ongoing and very excellent series of books of the same name. We’ll use these names for now own.

Figure 1-1 provides a summary of some of the major events that we’ve highlighted in this chapter, plus some other milestones of interest.
<table>
<thead>
<tr>
<th>Year</th>
<th>IDEs, Text editors & Notebooks</th>
<th>Key libraries of interest</th>
<th>Conferences & Meetings</th>
<th>Foundations & Corporations</th>
<th>Publications mentioned</th>
<th>Core language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>Google Colab, Python Extension for VS Code, Jupyter, NumPy, Notebooks added to iPython</td>
<td>tensorflow & Keras, scikit-learn, pandas, SciPy, NumPy, matplotlib & iPython</td>
<td>First PyData</td>
<td>Anaconda</td>
<td>Python v2.x end-of-life, Python v3 released</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td></td>
<td></td>
<td>First SciPy</td>
<td></td>
<td>Python dev begins</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td>First PyCon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td>Python Software Foundation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>IDEs, Text editors & Rmarkdown</th>
<th>Key packages of interest</th>
<th>Conferences & Meetings</th>
<th>Foundations & Corporations</th>
<th>Publications mentioned</th>
<th>Core language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>RStudio Cloud, RStudio release</td>
<td>reticulate, Tidyverse, dplyr & tidyr, ggplot2</td>
<td>First rstudio.conf</td>
<td>First UseR!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td></td>
<td></td>
<td>First BioC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td>First UseR!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td>The R Core Team</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td>Microsoft acquires Revolution Analytics, R-ladies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1-1. A timeline of Python and R data science milestones.

1 Well, OK, more like *For Statisticians, By Statisticians*, but FSBS doesn’t have the same ring to it.

2 With the possible exception of *Computational methods for data analysis* which I admit to having not read.

3 Python users might not be familiar with the term “base”. This means only the built-in functionality of the language without any additional package installations. Base R itself is well-equipped for data analysis. In Python, a data scientist would import the PyData stack by default.
Part II. Bilingualism I: Learning a new language

In this part, I’ll introduce the two core languages for data science: Python and R. In contrast to other introductions, I expect some familiarity in one language before introducing the other. In short, I expect that you’re carrying baggage. I’d like to advise you to leave your baggage at the door, but baggage is designed to be hauled around, so that’s kind of hard to do. Instead, let’s embrace your baggage! Recognize that Python and R operate quite differently and you may not always find a 1:1 translation. That’s ok!

When I teach R and Python for complete beginners, each lesson is an element, a fundamental component of the whole. The first four elements are

1. **Functions** - How to perform actions, i.e. the verbs.
2. **Objects** - How to store information, i.e. the nouns.
3. **Logical Expressions** - How to ask questions.
4. **Indexing** - How to find information.

There are many layers beyond these four elements, but these are the core, essential ones. Once you have a good grasp of these elements, you have the tools to delve further on your own. My goal is to get you to that point. Thus, the following chapters are not thorough introductions to each language.

Appendix A contains a quick-reference Python/R bilingual dictionary. It will help you translate code you’re familiar with into your new still unfamiliar language.

Chapter 2

Begin here if you’re a Pythonista who wants to get into the uerR’s mindset.
Chapter 3

Begin here if you’re a useR who wants to get into the Pythonista’s mindset. Once you’re familiar with your new language, continue onto Part III to learn when each is most appropriate.
Welcome, brave Pythonista, to the world of the useR! In this chapter our goal is to introduce you to R’s core features and try to address some of the confusing bits that you’ll encounter along the way. Thus, it’s useful to mention what we’re not going to do.

First, we’re not writing for the naïve data scientist. If you want to learn R from scratch, there are many wonderful resources available; too many to name. We encourage you to explore them and choose those which suit your needs and learning style. Here, we’ll bring up topics and concerns that may confuse the complete novice. We’ll take some detours to explain topics that we hope will specifically help the friendly Pythonista to adapt to R more easily.

Second, this is not a bilingual dictionary, you’ll find that in Appendix A, but without context it’s not really useful. Here, we want to take you through a journey of exploRation and undeRstanding. We want you to get a feel for R so that you begin to think R, becoming bilingual. Thus, for the sake of narrative, we may introduce some items much later than when writing for a complete novice. Nonetheless, we hope that you’ll return back to this chapter when you need to remind yourself of how to do familiar tasks in a new language.

Third, This is not a comprehensive guide. Once you crack the R coconut, you’ll get plenty of enjoyment exploring the language deeper to address your specific needs as they arise. As we mentioned in the first part of the book, the R community is diverse, friendly, welcoming — and helpful! We’re convinced it’s one of the less tech-bro cultures out there. To get an idea of the community, you can follow #rstats on Twitter.
Up and running with R

To follow the exercises in this chapter, you can either access R online using RStudio Cloud or install R and RStudio locally. RStudio Cloud is a platform providing access to an R instance (via an RStudio IDE) and allows you to upload your own data and share projects. We’ll cover both methods in the following paragraphs.

To use RStudio Cloud, make an account at http://rstudio.cloud/ and then navigate to our publically-available project. Make sure to save a copy of the project in your workspace so that you have your own copy, you’ll see the link in the header.

Your RStudio session should look like figure Figure 2-1. Open ch02-r4py/r4py.R and that’s it! You’re ready to follow along with all the examples. To execute commands press ctrl + enter (or cmd + enter).
R version 4.0.2 (2020-06-22) -- "Taking Off Again"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

>
To run R locally, you’ll find it’s available with the Anaconda distribution, if you use that, otherwise you can install it directly. First download and install R for your operating system from https://www.r-project.org/. R v4.0 was released on in June 2020 and in contrast to Python v3.x, is backwards compatible, with a few notable exceptions. We’ll assume you’re running at least R 4.0.0: “Taking Off Again”. Each release gets a name inspired by Peanuts (the classic comic strip and film franchise featuring Charlie Brown, Snoopy and co.). Which is a nice personal touch, I think. Next, install the RStudio Desktop IDE from https://rstudio.com/.

Finally, set up a project to work on. This is a bit different from a virtual environnement, which we’ll discuss later on. There are two typical ways to make a project with pre-existing files.

First, if you’re using git, you’ll be happy to know that RStudio is also a basic git GUI client. In RStudio, select File > New project > Version Control > Git and enter the repository URL https://github.com/moderndatadesign/PyR4MDS. The project directory name will use the repo name automatically. Choose where you want to store the repo and click “Create Project”.

Second, if you’re not using git, you can just download and unzip the repo from https://github.com/moderndatadesign/PyR4MDS. In RStudio, select File > Existing Directory and navigate to the downloaded directory. A new R project file, *.Rproj will be created in that directory.

Your RStudio session should look like figure Figure 2-2. Open ch02-r4py/r4py.R and that’s it! You’re ready to follow along with all the examples. To execute commands press ctrl + enter (or cmd + enter).
R version 4.0.0 (2020-04-24) -- "Arbor Day"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin7.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

>
Projects and packages

We could begin exploring R by using a built-in data set, and diving right into the Tidyverse (introduced in Chapter 1) but I want to step back for a second, take a deep breath, and begin our story at the beginning. Let’s begin by reading in a simple csv file. For this, we’re going to use a data set that is actually already available in R in the ggplot2 package. For our purposes, we’re less bothered with the actual analysis than how it’s being done in R. I’ve provided the dataset as a file in the book repository.

If you set up your project correctly (see above) all you’ll need to execute is the following command. If this command doesn’t work, don’t worry, we’ll return to it shortly.

```r
diamonds <- read.csv("ch02-r4py/data/diamonds.csv")
```

Just like in Python, single (') and double ("") quotation marks are interchangeable, although there is a preference for double quotation marks.

You should now have the file imported and available as an object in your global environment, where your user-defined objects are found. The first thing you’ll notice is that the environment pane of RStudio will display the object and already give some summary information. This lovely, simple touch is similar to the Jupyter notebook extension for VScode (see Chapter 3), which also lets you view your environment. Although this is a standard feature in RStudio, viewing a list of objects when scripting in Python, or many languages for that matter, is not typical. Clicking the little blue arrow beside the object name will reveal a text description (see fig. Figure 2-3).
Chapter 3 script

Rick Scavetta & Boyan Angelov

Import file

diamonds <- read.csv("R4Py/diamonds.csv")
Clicking on the name will open it up in an Excel-like viewer (see fig. Figure 2-4).
Import file

diamonds <- read.csv("RAPy/diamonds.csv")

View(diamonds)
NOTE

The RStudio viewer is much nicer than Excel, since it only loads into memory what you’re seeing on the screen. You can search for specific text and filter your data here, so it’s a handy tool for getting a peek at your data.

Although these are nice features, some users consider them to be a bit too much GUI and a bit too little IDE. Pythonistas would mostly agree and some criticize the user experience of RStudio because of this. I partly agree, since I’ve seen how it can encourage bad practices. For example, to import your data set, you could have also clicked on the “import dataset…” button. This can be convenient if you’re having a really hard time parsing through the file’s structure, but it leads to undocumented, non-reproducible actions which are extremely frustrating since scripts/projects will not be self-contained. The command to import the file will be executed in the console, and visible in the history panel, but it will not appear in the script unless you explicitly copy it. This results in object in the environment which are not defined in the script. However, remember that RStudio is not R. You can use R with other text editors (for example the ESS (“emacs speaks statistics”) extension for emacs).

If you couldn’t import your data with the above command, either (i) the file doesn’t exist in that directory, or (ii) you’re working in the wrong working directory, which is more likely. You may be tempted to write something terrible, like this:

```r
diamonds <- read.csv("ch02-r4py/data/diamonds.csv")
```

You’ll be familiar with avoiding the use of hard-coded paths when using virtual environments with Python. Using relative paths, as we did earlier, ensures that our file directory contains all necessary data files. Neither the working directory nor the project are virtual environments, but they are nonetheless very handy, so let’s check them out!

The working directory is the first place R looks for a file. When you use R projects, the working directory is wherever you have the *.Rproj file. Thus, ch02-r4py is a sub-directory in our working directory. It doesn’t matter what the working directory is called or where it is. You can move the entire project anywhere on your computer and it will still just work once you open the project (the *.Rproj file) in RStudio.
WARNING

If you’re not using R projects, then your working directory will likely be your home directory, displayed as project: (None) in RStudio. This is terrible because you’ll have to specify the entire path to your file instead of just the sub-directories within your project. You’ll find the command getwd() to get, and setwd() to set the working directory in many outdated tutorials. Please don’t use these commands! They result in the same problems of hard-coding full file paths.

Let’s return to our command diamonds <- read.csv("ch02-r4py/data/diamonds.csv"). You’ll already notice some things that will confuse and/or aggravate the seasoned Pythonista. Three things in particular stand out.

First, notice that it’s common place, and even preferred, to use <- as the assign operator in R. You can use =, as in Python, and indeed you’ll see prominent and experienced useRs do this, but <- is more explicit as assign to object since = is also used to assign values to arguments in function calls, and we all know how much Pythonistas love being explicit!

NOTE

The <- assign operator is actually a legacy operator stemming from the pre-standardized QWERTY keyboard where the <- didn’t mean move the cursor one space to the left but literally, make <- appear.

Second, notice that the function name is read.csv(), nope, that’s not a typo. csv() is not a method of object read, nor is it a function of module read. Both are completely acceptable interpretations if this was a Python command. In R, with a few, but notable, exceptions, . doesn’t mean anything special. It’s a bit annoying if you’re used to more OOP-oriented languages where . is a special character.

Finally, you’ll notice that we didn’t initialize any packages to accomplish this task. The read.*() function variants are a part of base R. Interestingly, there are newer and more convenient ways of reading in files if these functions don’t satisfy your needs. e.g. the read_csv() function is in the readr package. We
know you’re excited to see that _!

In general, when you see simple functions with . these are old base R functions created when nobody worried that it would be confusing to have . in the names. Functions from the newer Tidyverse packages, e.g. `readr`, tend to use _ (see Chapter 1). They basically do the same thing, but with some slight tweaks to make them more user-friendly.

Let’s see this in action with `readr`. Just like in Python, you’ll need to install the package. This is typically done directly in the R console, there is no pip equivalent in R.

Use the following command:

```r
install.packages("tidyverse")
```

NOTE

In RStudio, you can install packages by using to the “Packages” panel in the lower-right pane and clicking on the “Install” button. Type in `tidyverse` and make sure that the “install all dependencies” box is checked and click OK. If you go this route, refrain from clicking on the checkboxes beside the names of the installed packages. This will initialize the package, but not record it in your script.

This will by default install packages and their dependencies from CRAN, the repository of official R packages. Official packages have undergone quality control and are hosted on mirrored servers around the world. The first time you do this, you’ll be asked to choose a mirror site to install from. For the most part it doesn’t matter which one you choose. You’ll see a lot of red text as the core Tidyverse packages and all their dependencies are installed. This is mostly just a convenient way to get lots of useful packages installed all at once.

The most common problem in installing packages is to not have write permission in the packages directory. This will prompt you to create a personal library. You can always check where your packages are installed by using

```r
.libPaths()
```

[1] "/Library/Frameworks/R.framework/Versions/4.0/Resources/library"
If you have a personal library, it will be shown here in the second position.

NOTE
In contrast to Pythonistas, who tend to use virtual environments, useRs typically install a package once, making it available system-wide. After many false starts in trying to implement a solution for project-specific libraries in R, the current favorite is the renv package, i.e. R environments.

As in Python, after installing a package, it needs to be initialized in each new R session. When we say initialize, or load, a package, what we’re really saying is “use the library() function to load an installed package and then attach it to the namespace, i.e. the global environment”. All your packages comprise your library, hence library(). The core suite of packages in the Tidyverse can be loaded using library(tidyverse). That is commonplace, and for the most part not a problem, but you may want to get into the habit of loading only those packages that you actually require instead of filling up your environment needlessly. Let’s start with readr, which contains the read_csv() function.

```r
# R
library(readr)
```

This is the equivalent of:

```python
# Python equivalent
import readr
```

Although R uses OOP, it’s mostly operating in the background, hence you’ll never see strange aliases for packages like:

```python
import readr as rr
```

That’s just a foreign concept in R. After you have attached the package all functions and datasets in that package are available in your global environment.

WARNING
This calls to mind another legacy function that you may see floating around. You must absolutely avoid `attach()` (and for the most part its counterpart `detach()`). This function allows you to `attach` an object to your global environment, much like how we attached a package. Thus, you can call elements within the object directly, without first specifying the object name explicitly, like how we call functions within a package without having to explicitly call the package name every time. The reason this has fallen out of favor is that you’re likely to have many data objects that you want to access, so conflicting names are likely to be an issue (i.e. leading to masking of objects). Plus, it’s just not explicit.

I want to address one other issue with loading packages before we continue. You’ll often see:

```r
require(readr)
```

`require()` will load an installed package and also return a TRUE/FALSE based on success. This is useful for testing if a package exists, and so should be reserved for those instances where that is necessary. For the most part you want to use `library()`.

Alright, let’s read in our data set again, this time using `read_csv()` to make some simple comparisons between the two methods.

```r
> diamonds_2 <- read_csv("R4Py/diamonds.csv")
Parsed with column specification:
cols(
  carat = col_double(),
  cut = col_character(),
  color = col_character(),
  clarity = col_character(),
  depth = col_double(),
  table = col_double(),
  price = col_double(),
  x = col_double(),
  y = col_double(),
  z = col_double()
)
```

You’ll notice that we’re afforded a more detailed account of what’s happened.

As we mentioned earlier, Tidyverse design choices tend to be more user-friendly than older processes they update. This output tells us the column names of our tabular data and their types (see Table 2-2).
Also note that the current trend in R is to use snake case, underscores (“_”) between words and only lower case letters. Although there has classically been poor adherence to a style guide in R, the Advanced R book offers good suggestions. Google also attempted to promote an R style guide, but it doesn’t seem that the community is very strict on this issue. This is in contrast to a strict adherence to the PEP 8 Style Guide for Python Code, authored by Guido van Rossum and released in the early days of Python.

The triumph of tibbles

So far, we’ve imported our data twice, using two different commands. This was done so that you can see some of how R works under-the-hood and some typical behavior of the Tidyverse versus base package. We already mentioned that you can click on the object in the Environment Viewer to look at it, but it’s also typical to just print it to the console. You may be tempted to execute:

```r
> print(diamonds)
```

But the `print()` function is not necessary except in specific cases, like within a `for` loop. As with a Jupyter notebook, you can just execute the object name, e.g.:

```r
> diamonds
```

This will print the object to the console. We won’t reproduce it here, but if you do execute the above command, you’ll notice that this is not a nice output! Indeed, one wonders why the default output allows so much to be printed to the console in interactive mode. Now try with the data frame we read in using `read_csv()`:

```r
> diamonds_2
# A tibble: 53,940 x 10
  carat cut  color clarity depth table price  x  y  z
  <dbl> <chr> <chr> <chr>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.23 Ideal E SI2   61.5  55  326  3.95  3.98 2.43
2 0.21 Premium E SI1  59.8  61  326  3.89  3.84 2.31
3 0.23 Good E VS1   56.9  65  327  4.05  4.07 2.31
4 0.29 Premium I VS2  62.4  58  334  4.2   4.23 2.63
```
<table>
<thead>
<tr>
<th>#</th>
<th>carat</th>
<th>cut</th>
<th>color</th>
<th>clarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.31</td>
<td>Good</td>
<td>J</td>
<td>SI2</td>
</tr>
<tr>
<td>6</td>
<td>0.24</td>
<td>Very Good</td>
<td>J</td>
<td>VVS2</td>
</tr>
<tr>
<td>7</td>
<td>0.24</td>
<td>Very Good</td>
<td>I</td>
<td>VVS1</td>
</tr>
<tr>
<td>8</td>
<td>0.26</td>
<td>Very Good</td>
<td>H</td>
<td>SI1</td>
</tr>
<tr>
<td>9</td>
<td>0.22</td>
<td>Fair</td>
<td>E</td>
<td>VS2</td>
</tr>
<tr>
<td>10</td>
<td>0.23</td>
<td>Very Good</td>
<td>H</td>
<td>VS1</td>
</tr>
</tbody>
</table>

... with 53,930 more rows

Wow! That’s a much nicer output than the default base R version. We have a neat little table with the names of the columns on one row, and 3-letter codes for the data types below that in <>.

We only see the first 10 rows and then a note telling us how much we’re not seeing. If there were too many columns for our screen, we’d see them listed at the bottom. Give that a try, set your console output to be very narrow and execute the command again:

```r
# A tibble: 53,940 x 10
  carat cut  color clarity  depth table price   x    y    z
<dbl> <chr> <chr> <chr>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1  0.23 Ideal E    SI2      3.95   58  335  4.34  4.35  2.75
2  0.21 Premium E  SI1      3.96   57  336  3.94  3.95  2.48
3  0.23 Good E    VS1      3.98   57  336  3.95  3.96  2.47
4  0.290 Premium I VS2      4.11   55  337  4.07  4.08  2.53
5  0.31 Good J    SI2      4.12   58  335  4.35  4.36  2.75
6  0.24 Very G... J VVS2     4.14   57  336  3.96  3.97  2.48
7  0.24 Very G... I VVS1     4.15   55  337  4.08  4.09  2.53
8  0.26 Very G... H SI1      4.16   58  335  4.36  4.37  2.75
9  0.22 Fair E    VS2      4.17   55  336  3.97  3.98  2.48
10 0.23 Very G... H VS1      4.18   57  336  4.37  4.38  2.75
```

Base R was already pretty good for Exploratory Data Analysis (EDA), but this is next level convenience. So what happened? Actually understanding this is pretty important, but first we want to highlight two other interesting points.

First, notice that we didn’t need to load all of `readr` to gain access to the `read_csv()` function. We could have left out `library(readr)` and just used:

```r
> diamonds_2 <- readr::read_csv("R4Py/diamonds.csv")```
The double-colon operator :: is used to access functions within a package. It’s akin to:

```
from pandas import read_csv
```

You’ll see :: used when users know that they’ll only need one very specific function from a package, or that functions in two packages may conflict with each other, so they want to avoid attaching an entire package to their namespace.

Second, this is the first time we see actual data in R and we can tell right away that numbering begins with 1! (and why wouldn’t it?)

---

**NOTE**

Just as an aside for printing objects to the screen. You’ll often see round brackets around an entire expression. This just means to execute the expression and print the object to the screen.

```
(aa <- 8)
```

It mostly just clutters up commands. Unless it’s necessary, just explicitly call the object.

```
aa <- 8
```

```
aa
```

Plus, it’s easier to just comment out (use ctrl+shift+c in RStudio) the print line instead of having to go back and remove all those extra brackets.

Ok, so let’s get to the heart of what’s happening here. Why do diamonds and diamonds_2 look so different when printed to the console. Answering this question will help us to understand a bit about how R handles objects. To answer this question, let’s take a look at the class of these objects:

```
class(diamonds)
[1] "data.frame"

class(diamonds_2)
[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"
```

You’ll be familiar with a `data.frame` from `pandas.DataFrame` (ok, can
we just admit that a pandas DataFrame is just a Python implementation of an R data.frame?). But using the Tidyverse read_csv() function produced an object with three additional classes. The two to mention here are the sub-class tbl_df and the class tbl, the two go hand-in-hand for defining a tibble (hence tbl) which has a data frame structure tbl_df.

Tibbles are a core feature of the Tidyverse and have many perks over base R objects. For example, printing to the console. Recall that calling an object name is just a shortcut for calling print(). print() in turn has a method to handle data frames and now that we’ve attached the readr package, it now has a method to handle objects of class tbl_df.

So here we see OOP principles operating in the background implicitly handling object classes and calling the methods appropriate to a given class. Convenient! Confusing? Implicit! I can see why Pythonistas get annoyed, but once you get over it, you see that you can just get on with your work without too much hassle.

A word about types and exploring

Let’s take a deeper look at our data and see how R stores and handles data. A data frame is a 2-dimensional heterogenous data structure. It sounds simple, but let’s break it down a bit further.

<table>
<thead>
<tr>
<th>Name</th>
<th>Number of dimensions</th>
<th>Type of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector</td>
<td>1</td>
<td>Homogeneous</td>
</tr>
<tr>
<td>List</td>
<td>1</td>
<td>Heterogeneous</td>
</tr>
<tr>
<td>Data Frame</td>
<td>2</td>
<td>Heterogeneous</td>
</tr>
<tr>
<td>Matrix</td>
<td>2</td>
<td>Homogeneous</td>
</tr>
<tr>
<td>Array</td>
<td>n</td>
<td>Homogeneous</td>
</tr>
</tbody>
</table>

Vectors are the most basic form of data storage. They are 1-dimensional and homogeneous. That is, one element after another, where every element is of the
same type. It’s like a 1-dimensional numpy array composed solely of scalars. We don’t refer to scalars in R, that’s just a 1-element long vector. There are many types in R, and 4 commonly-used “user-defined atomic vector types”. The term “atomic” already tells us that it doesn’t get any more basic than what we find in Table 2-2.

**Table 2-2. Data Types**

<table>
<thead>
<tr>
<th>Type</th>
<th>Data frame shorthand</th>
<th>Tibble shorthand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical</td>
<td>logi</td>
<td>&lt;lgl&gt;</td>
<td>Binary TRUE/FALSE, T/F, 1/0</td>
</tr>
<tr>
<td>Integer</td>
<td>int</td>
<td>&lt;int&gt;</td>
<td>Whole numbers from [-Inf,Inf]</td>
</tr>
<tr>
<td>Double</td>
<td>num</td>
<td>&lt;dbl&gt;</td>
<td>Real numbers from [-Inf,Inf]</td>
</tr>
<tr>
<td>Character</td>
<td>chr</td>
<td>&lt;chr&gt;</td>
<td>All alpha-numeric characters, including white spaces.</td>
</tr>
</tbody>
</table>

The two other, less common, user-defined atomic vector types are `raw` and `complex`.

Vectors are fundamental building blocks. There are a few things to note about vectors, so let’s get that out of the way before we return to the workhorse of data science, the beloved data frame.

The four user-defined atomic vector types listed in Table 2-2 are ordered according to increasing levels of information content. When you create a vector, R will try to find the lowest information-content type that can encompass all the information in that vector. e.g. logical:

```r
> a <- c(TRUE, FALSE)
> typeof(a)
[1] "logical"
```

*logical*, is R’s equivalent of `bool`, but is very rarely referred to as boolean or binary. Also, note that `T` and `F` are not in themselves reserved terms in R, and so they are not recommended for logical vectors, although they are valid. Use `TRUE` and `FALSE` instead. Let’s take a look at numbers:
R will automatically convert between double and integer as needed. Math is performed primarily using double-precision, which is reflected in the data frame shorthand for double being displayed as `numeric`. Unless you explicitly need to restrict a number to be a true integer, then numeric/double will be fine. If you do want to restrict values to be integer, you can *coerce* them to a specific type using one of the `as.*()` function, or use the `L` suffix to specify that a number must be an integer.

```r
> b <- c(1, 2)
> typeof(b)
[1] "double"

> c <- c(3.14, 6.8)
> typeof(c)
[1] "double"
```

Characters are R’s version of strings. You’ll know this as `str` in Python, which is, confusingly, a common R function, `str()`, which gives the `structure` of an object. Characters are also frequently referred to as strings in R, including in arguments and package names, which is an unfortunate inconsistency.

```r
> d <- c("a", "b")
> typeof(d)
[1] "character"
```

Putting these together in a vanilla data frame using `data.frame()` or using the more recently developed tibble using `tibble()`, gives us:

```r
my_tibble <- tibble(a = c(T, F),
 b = c(1L, 2L),
 c = c(3.14, 6.8),
 d = c("a", "b"))

my_tibble
```
Notice we get the nice output from `print()` since it’s a tibble. When we look at the `structure`, we’ll see some confusing features:

```
> str(my_tibble)
tibble [2 x 4] (S3: tbl_df/tbl/data.frame)
$ a: logi [1:2] TRUE FALSE
$ b: int [1:2] 1 2
$ c: num [1:2] 3.14 6.8
$ d: chr [1:2] "a" "b"
```

`str()` a classic base package function and gives some bare bones output, it’s similar to what you’ll see when you click on the reveal arrow beside the objects name in the environment panel. The first row gives the object’s class (which we already saw above). S3 refers to the specific OOP system that this object uses, which in this case is the most basic and un-strict OOP system.

Alternatively, we can also use the Tidyverse `glimpse()` function, from the `dplyr` package.

```
> library(dplyr)
> glimpse(my_tibble)
Rows: 2
Columns: 4
$ a <lgl> TRUE, FALSE
$ b <int> 1, 2
$ c <dbl> 3.14, 6.80
$ d <chr> "a", "b"
```

Notice that Table 2-2 also states the short hand `num` which does not appear in the output of `glimpse()`. This refers to the the “numeric” class, which refers to either double (for double-precision floating-point numbers) or integer type.

The above examples showed us that a `data.frame` is a heterogenous, 2-dimensional collection of homogeneous 1-dimensional vectors, each having the same length. We’ll get to why R prints all those dollar signs below (and no, it has nothing to do with your salary!)
# Naming (internal) things

We already mentioned that snake case is the current trend in naming objects in R. However, naming columns in a data frame is a different beast altogether since we just inherit names from the first line of the source file. Data frames in base R, obtained e.g. using the `read.*()` family of functions or manually created using the `data.frame()` function doesn’t allow for any “illegal” characters. Illegal characters include all white spaces and all reserved characters in R, e.g.: 

- Arithmetic operators (+, -, /, *, etc.),
- Logical operators (&, |, etc.),
- Relational operators (==, !=, >, <, etc.)
- Brackets, ([, (, {, < and their closers)

In addition, although they can contain numbers, they can’t begin with numbers.

Let’s see what happens:

```r
Base package version
data.frame("Weight (g)" = 15,
 "Group" = "trt1",
 "5-day check" = TRUE)
```

All the illegal characters have been replaced with .! I know, right? R is really having a good time mocking you OOP obsessives! On top of that, any variable that began with a number is now prefaced with an X.

So what about importing a file with no header?

```r
> diamonds_base_nohead <- read.csv("ch02-r4py/data/diamonds_noheader.csv", header = F)
> names(diamonds_base_nohead)
[1] "V1" "V2" "V3" "V4" "V5" "V6" "V7" "V8" "V9" "V10"
```

In base R, if we don’t have any header, the given names are V for “variable” followed by the number of that column.

The same file read in with one of the `readr::read_*()` family of functions
or created with `tibble()` will maintain illegal characters! This seems trivial, but it’s actually a serious critique of the Tidyverse and it’s something to pay close attention to if you start meddling in other people’s scripts. Let’s look:

```r
> tibble("Weight (g)" = 15,
+ "Group" = "trt1",
+ "5-day check" = TRUE)
A tibble: 1 x 3
`Weight (g)` `Group` `5-day check`
<dbl> <chr> <lgl>
1 15 trt1 TRUE
```

Notice the paired back-ticks for the column `Weight (g)` and `5-day check`? You now need to use this to escape the illegal characters. Perhaps this makes for more informative commands, since you have the full name, but you’ll likely want to maintain short and informative column names anyways. Information about the unit (e.g. g for weight) is extraneous information that belongs in a data set legend.

Not only that, but the names given to header-less datasets are also different:

```r
> diamonds_tidy_nohead <- read_csv("ch02-r4py/data/diamonds_noheader.csv", col_names = F)
> names(diamonds_tidy_nohead)
[1] "X1" "X2" "X3" "X4" "X5" "X6" "X7" "X8" "X9" "X10"
```

Instead of `V` we get `X`! This takes us back to the Tidyverse as a distinct dialect in R. If you inherit a script entirely in base R, you’ll have a tricky time if you just start throwing in Tidyverse functions with wild abandon. It’s like asking for a Berliner in a Berlin bakery!

### Lists

Lists are another common data structure, but they’re not exactly what you expect form a Python list, so the naming can be confusing. Actually, we’ve already encountered lists in our very short R journey. That’s because `data.frame`s are a specific class of type `list`. Yup, you heard that right.

```r
> typeof(my_tibble)
```
Table 2-1 tells us that a list is a 1-dimensional, heterogenous object. What that means is that every element in this 1-dimensional object can be a different type, indeed lists can contain not only vectors, but other lists, data frames, matrices, and on and on. In the case that each element is a vector of the same length, we end up with tabular data that is then class data.frame. Pretty convenient, right? Typically, you’ll encounter lists as the output from statistical tests, let’s take a look.

The PlantGrowth data frame is a built-in object in R. It contains two variables (i.e. elements in the list, aka columns in the tabular data): weight and group.

```
> glimpse(PlantGrowth)
Rows: 30
Columns: 2
$ weight <dbl> 4.17, 5.58, 5.18, 6.11, 4.50, 4.6...
$ group <fct> ctrl, ctrl, ctrl, ctrl, ctrl, ctrl, ...
```

The data set describes the dry plant weight (in grams, thank you data legend) of 30 observations (i.e. individual plants, aka rows in the tabular data) grown under one of three conditions described in groups: ctrl, trt1, and trt2. The convenient glimpse() function doesn’t show us these three groups, but the classic str() does:

```
> str(PlantGrowth)
'data.frame': 30 obs. of 2 variables:
$ weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14 ...
$ group: Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 1 1 1 1 ...
```

If you’re getting nervous about <fct> and Factor w/ 3 levels, just hang tight — we’ll talk about that after we’re done with lists.

Alright, let’s get to some tests. We may want to define a linear model for weight described by group:

```
pg_lm <- lm(weight ~ group, data = PlantGrowth)
```
\texttt{lm()} is a foundational and flexible function for defining linear models in R. Our model is written in \textit{formula notation}, where \texttt{weight ~ group} is \texttt{y ~ x}. You’ll recognize the \texttt{~} as the standard symbol for “described by” in statistics. The output is a type \texttt{list} of class \texttt{lm}:

\begin{verbatim}
> typeof(pg_lm)
[1] "list"
> class(pg_lm)
[1] "lm"
\end{verbatim}

There are two things that we want to remind you of and build on here.

First, remember that we mentioned that a data frame is a collection of vectors of the same length? Now we see that that just means that it’s a special class of a type list, where each \textit{element} is a vector of the same length. We can access a named element within a list using the $ notation:

\begin{verbatim}
> names(PlantGrowth)
[1] "weight" "group"
> PlantGrowth$weight
 [15]  5.87  3.83  6.03  4.89  4.32  4.69  6.31  5.12  5.54  5.50  5.37  5.29  4.92  6.15
 [29]  5.80  5.26
\end{verbatim}

Notice the way it’s printed, along a row, and the beginning of each row begins with a [ ] with an index position in there. (we already mentioned that R begins indexing at 1, right?) In RStudio, you’ll get an autocomplete list of column names after typing $.

We can also access a named element within a list using the same notation:

\begin{verbatim}
> names(pg_lm)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "contrasts" "xlevels" "call" "terms"
[13] "model"
\end{verbatim}

You can see how a list is such a nice way to store the results of a statistical test since we have lots of different kinds of output. e.g. \texttt{coefficients}: 

\begin{verbatim}
> pg_lm$coefficients
(Intercept) group1 group2
 5.513214  0.368214  2.234857
\end{verbatim}
is a named 3-element long numeric vector. (although its elements are named, the \$ operator is invalid for atomic vectors, but we have some other tricks up our sleeve, of course — see indexing with \[ \] below). We didn’t get into the details, but you may be aware that given our data we expect to have three coefficients (estimates) in our model.

Consider residuals:

```
> pg_lm$residuals
 1 2 3 4 5 6 7 8 9 10
-0.862 0.548 0.148 1.078 -0.532 -0.422 0.138 -0.502 0.298 0.108
 11 12 13 14 15 16 17 18 19 20
 0.149 -0.491 -0.251 -1.071 1.209 -0.831 1.369 0.229 -0.341 0.029
 21 22 23 24 25 26 27 28 29 30
 0.784 -0.406 0.014 -0.026 -0.156 -0.236 -0.606 0.624 0.274 -0.266
```

They are stored in a named 30-element long numerical vector (remember we had 30 observations). So lists are pretty convenient for storing heterogenous data and you’ll see them quite often in R, although there is a concerted effort in the Tidyverse towards data frames and their variants thereof.

Second, remember we mentioned that the \_ mostly doesn’t have any special meaning. Well here’s one of the exceptions where the \_ does actually have a meaning. Probably the most common use is when it specifies all when defining a model. Here, since other than the weight column, PlantGrowth only had one other column, we could have written:

```
lm(weight ~ ., data = PlantGrowth)
```

### NOTE

A note on variable types. By using \( y \sim x \) formula, we’re say that x is the “independent” or the “predictor” variable(s) and y is “dependent” on x, or the “response” to the predictor.

It’s not really necessary, since we only have one independent variable here, but
in some cases it’s convenient. The ToothGrowth dataset has a similar experimental set up, but we’re measuring the length of tooth growth under two conditions, a specific supplement (supp) and its dosage (dose).

```
lm(len ~ ., data = ToothGrowth)
is the same as
lm(len ~ supp + dose, data = ToothGrowth)
```

But like always, being explicit has it’s advantages, such as defining more precise models:

```
lm(len ~ supp * dose, data = ToothGrowth)
```

Can you spot the difference between the two outputs? Specifying interactions is done with the `*`

### The facts about factors

Alright, the last thing we need to clear up before we continue is the phenomena of the factor. Factors are akin to the pandas category type in Python. They are a wonderful and useful class in R. For the most part they exist and you won’t have cause to worry about them, but do be aware, since their uses and misuses will make your life a dream or a misery, respectively. Let’s take a look.

The name “factor” is very much a statistics term, we may refer to them as categorical variables, as Python does, but you’ll also see them referred to as qualitative and discrete variables, in text books and also in specific R packages, like RColorBrewer and ggplot2, respectively. Although these terms all refer to the same kind of variable, when we say factor in R, we’re referring to a class of type integer. It’s like how data.frame is a class of type list. Observe:

```
> typeof(PlantGrowth$group)
[1] "integer"
> class(PlantGrowth$group)
[1] "factor"
```

You can easily identify a factor because in both the output from `str()` (see above) and in plain vector formatting, the levels will be stated:
The levels are statisticians’ names for what are commonly called “groups”. Another give-away is that, although we have characters, they are not enclosed in quotation marks! This is very curious since we can actually treat them as characters, even though the are type integer (see Table 2-2). You may be interested to look at the internal structure of an object using `dput()` . Here we can see that we have an integer vector c(1L, ... ) and two attributes, the label and the class.

```r
> dput(PlantGrowth$group)
structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L),
 .Label = c("ctrl", "trt1", "trt2"),
 class = "factor")
```

The labels define the names of each level in the factor and are mapped to the integers, 1 being ctrl, and so on. So when we print to the screen we only see the names, not the integers. This commonly accepted to be a legacy use case from the days when memory was expensive and it made sense to save an integer many times over instead of a potentially long character vector.

So far, the only kind of factor we saw was really describing a nominal variable (a categorical variable with no order), but we have a nice solution for ordinal variables also. Check out this variable from the diamonds data set:

```r
> diamonds$color
Levels: D < E < F < G < H < I < J
```

The levels have an order, in the sense that D comes before E, and so on.

**How to find… stuff**

Alright, by now we saw how R stores data and various subtleties that you’ll need
to keep in mind, in particular things that may trip up a Pythonista. Let’s move onto logical expressions and indexing, which is to say: how to find… stuff?
Logical expressions are combinations of relational operators, which ask yes/no questions of *comparison*, and logical operators, which combine those yes/no questions.

Let’s begin with a vector:

```r
> diamonds$price > 18000
[1] FALSE FALSE FALSE FALSE FALSE FALSE
...
```

This simply asks which of our diamonds are more expensive than $18,000. There are three key things to always keep in mind here.

First, the length of the shorter object, here the unassigned numeric vector `18000` (1-element long) will be “recycled” over the entire length of the longer vector, here the `price` column from the `diamonds` data frame accessed with the `$` notation, (53,940 elements). In Python you may refer to this as broadcasting, when using *numpy* arrays, and vectorization as a distinct function. In R, we simply refer to both as vectorization, or vector recycling.

Second, this means that the output vector is the same length as the length of the longest vector, here 53,940 elements.

Third, anytime you see a relational or logical operator, you know that the output vector will always be a logical vector. Remember logical as in TRUE/FALSE, not logical as in Mr. Spock.

If you want to combine questions you’ll have to combine two complete questions, such as really expensive and small diamonds (classy!):

```r
> diamonds$price > 18000 & diamonds$carat < 1.5
[1] FALSE FALSE FALSE FALSE FALSE FALSE
...
```

Notice that all three key points above hold true. When I introduced the atomic vector types, I failed to mention that logical is also defined by 1 and 0. This means we can do math on logical vectors, which is very convenient. How many expensive little diamonds do we have?
> \texttt{sum(diamonds$price > 18000 & diamonds$carat < 1.5)}

[1] 9

(Not enough if I’m being honest). What proportion of my data set do they represent? Just divide by the total number of observations.

> \texttt{sum(diamonds$price > 18000 & diamonds$carat < 1.5)/nrow(diamonds)}

[1] 0.0001668521

So that’s asking and combining questions. Let’s take a look at indexing using \texttt{[\ ]}. You’re already familiar with \texttt{[\ ]}, but we feel that they are more straight-forward in R right out of the box. Here’s a summary:

\textit{Table 2-3. Indexing}

<table>
<thead>
<tr>
<th>Use</th>
<th>Data object</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx[i]</td>
<td>Vector</td>
<td>Vector of only (i) elements</td>
</tr>
<tr>
<td>xx</td>
<td>List, Data frame, tibble</td>
<td>The (i) element extracted from a list</td>
</tr>
<tr>
<td>xx[i]</td>
<td>List, Data frame, tibble</td>
<td>The (i) element maintaining the original structure</td>
</tr>
<tr>
<td>xx[i,j]</td>
<td>Data frame, tibble or matrix</td>
<td>The (i) rows and (j) columns of a data frame, tibble or matrix</td>
</tr>
<tr>
<td>xx[i,j,k]</td>
<td>Array</td>
<td>The (i) rows, (j) columns and (k) dimension of an array</td>
</tr>
</tbody>
</table>

\(i\), \(j\), and \(k\) are 1 of 3 different types of vector which can be used inside \texttt{[\ ]}:

1. An integer vector
2. A logical vector, or
3. A character vector containing names, if the elements are named.

This should be familiar to you already from Python. For integer and logical vectors, these can be unassigned vectors, or object or functions that resolve to integer or logical vectors. Numbers don’t need to be type integer, although whole numbers are clearer. Using numeric/double rounds \texttt{down} to the nearest whole number, but try to avoid using real numbers when indexing, unless it serves a
Let’s begin with integers. We’ll take another little detour here to discuss the omnipresent : operator, which won’t do what your Pythonista brain tells you it should do. We’ll begin with a built-in character vector, `letters`, which is the same as having a column in a data frame, like `PlantGrowth$weight`.

```r
> letters[1] # The 1st element (indexing begins at 1)
[1] "a"
```

So that’s pretty straight-forward. How about counting backwards?

```r
> letters[-4] # Everything except the 4th element,
> #(not* the fourth element, counting backwards!)
[1] "a" "b" "c" "e" "f" "g" "h" ...
```

Nope, that’s not happening, the - means to exclude an element, *not* to count backwards, but it was a nice try. We can also exclude a range of values:

```r
> letters[-(1:20)] # Exclude elements 1 through 20
[1] "u" "v" "w" "x" "y" "z"
```

and of course index a range of values:

```r
> letters[23:26] # The 23rd to the 26th element
[1] "w" "x" "y" "z"
```

And remember, we can combine this with anything that will give us an integer vector. `length()` will tell us how many elements we have in our vector, and `lhs:rhs` is short hand for the function `seq(from = lhs, to = rhs, by = 1)`, which creates a sequence of values in incremental steps of `by`, in this case defaulting to 1.

```r
> # The 23rd to the last element
[1] "w" "x" "y" "z"
```

So that means you always need an `lhs` and an `rhs` when using ::. It’s a pity, but this isn’t going to work:
Using the [] inappropriately gives rise to a legendary and mysterious error message in R:

> df[1]
Error in df[1] : object of type 'closure' is not subsettable
> t[6]
Error in t[6] : object of type 'closure' is not subsettable

Can you tell where we went wrong? df and t are not defined data storage objects that we can index! They are functions and thus they must be followed by () where we provide the arguments. [] are always used to subset and these functions, df() and t() are functions of type closure, which are not subsettable. So it’s a pretty clear error message actually, and a good reminder to not call objects using ambiguous, short names, or indeed to get confused between functions and data storage objects.

That’s all fine a good, but you’re probably aware that the true power in indexing comes from using logical vectors to index specific TRUE elements, just like using type bool in Python. The most common way of obtaining a logical vector for indexing is to use a logical expression (see above). This is exactly what happens with masking in numpy.

So what are the colors of those fancy diamonds?

> diamonds$color[diamonds$price > 18000 & diamonds$carat < 1.5]
[1] D D D D F D F F E
Levels: D < E < F < G < H < I < J

Here, we’re using price and carat to find the colors of the diamonds that we’re interested in. Not surprisingly, they are the best color classifications. You may find it annoying that you have to write diamonds$ repeatedly, but we would argue that it just makes it more explicit, and it’s what happens when we reference pandas Series in Python. Since we’re indexing a vector we get a vector as output. Let’s turn to data frames. We could have written the above indexing command as:

> diamonds[diamonds$price > 18000 & diamonds$carat < 1.5, "color"]
# A tibble: 9 x 1
## color
## <ord>  
1  D  
2  D  
3  D  
4  D  
5  F  
6  D  
7  F  
8  F  
9  E  

As you would expect, in \([i, j]\)`, i always refers to the rows (observations), and j always refers to columns (variables). Notice that we also mixed two different types of input, but it works because they were in different parts of the expression. We use a logical vector that is as long as the data frame’s number of observations (thank you vector recycling) to obtain all the TRUE rows, and then we used a character vector to extract a named element, recall that each column in a data frame is a named element. This is a really typical formulation in R. The output is a data frame, specifically a tibble, since we used indexing on the diamonds data frame, and not on a specific 1-dimensional vector therein. Not to get bogged down with the topic, but it is worth noting that if we didn’t have a tibble, indexing for a single column (in j) would return a vector:

```r
> class(diamonds)
[1] "data.frame"
> diamonds[diamonds$price > 18000 & diamonds$carat < 1.5, "color"]
[1] D D D F D F F E
Levels: D < E < F < G < H < I < J
```

This is indeed confusing and highlights that necessity to always be aware of the class of our data object. The Tidyverse tries to address some of this by maintaining data frames even in those instances where base R prefers to revert to a vector. The Tidyverse functions for indexing, shown below, makes things easier (the base package shorthand, subset(), works much in the same way, but filter() works better when used in a Tidyverse context.)

```r
> diamonds %>%
+ filter(price > 18000, carat < 1.5) %>%
+ select(color)
```
We introduced the principles behind the Tidyverse in the first part of the book, and now we’re seeing it in action. The `%>%` above allows us to `unnest` objects and functions. For example, we could have written:

```
> select(filter(diamonds, price > 18000, carat < 1.5), color)
```

That has the format of a long, nested function that is quite difficult to follow. We can pronounce `%>%` as “and then” and thus read the entire command above as “Take the diamonds data set and then filter using these criteria and then select only these columns”. This goes a long way in helping us to literally read and understand code and is why `dplyr` is described as the *Grammar of Data Analysis*. Objects, like tibbles, are the nouns, `%>%` is our punctuation, and functions are the verbs.

*Table 2-4. Function description*

<table>
<thead>
<tr>
<th>Function</th>
<th>Works on</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filter()</td>
<td>rows</td>
<td>Use a logical vector to retain only TRUE rows</td>
</tr>
<tr>
<td>arrange()</td>
<td>rows</td>
<td>Reorder rows according to values in a specific column</td>
</tr>
<tr>
<td>select()</td>
<td>columns</td>
<td>Use a name or a helper function to extract only those columns</td>
</tr>
<tr>
<td>summarise()</td>
<td>columns</td>
<td>Apply aggregation functions to a column</td>
</tr>
<tr>
<td>mutate()</td>
<td>columns</td>
<td>Apply transformation functions to a column</td>
</tr>
</tbody>
</table>

The five most important verbs in `dplyr` are listed in Table 2-4. We already saw
filter() and select() in action, so let’s take a look at applying functions with summarise() and mutate(). summarise() is used to apply an aggregation function, which returns a single value, like the mean, mean(), or standard deviation, sd(). It’s common to see summarise() used in combination with the group_by() function. In our analogy of grammatical elements, group_by() is an adverb, it modifies how a verb operates. In the example below, we use group_by() to add a Group attribute to our data frame and the functions applied in summarise are thus group-specific. It’s just like the .groupby() method for pandas DataFrames!

```r
> PlantGrowth %>%
+ group_by(group) %>%
+ summarise(avg = mean(weight),
+ stdev = sd(weight))
'summarise()' ungrouping output (override with \'.groups` argument)
A tibble: 3 x 3
 group avg stdev
 <fct> <dbl> <dbl>
1 ctrl 5.03 0.583
2 trt1 4.66 0.794
3 trt2 5.53 0.443
```

mutate() is used to apply a transformation function, which returns as many outputs as inputs. In these cases it’s not unusual to use both Tidyverse syntax and native [] in combination to index specific values. For example, this data set contains the area under irrigation (thousands of hectares) for different regions of the world at four different time points.

```r
> irrigation <- read_csv("R4Py/irrigation.csv")
Parsed with column specification:
cols(
 region = col_character(),
 year = col_double(),
 area = col_double()
)
> irrigation
A tibble: 16 x 3
 region year area
 <chr> <dbl> <dbl>
1 Africa 1980 9.3
2 Africa 1990 11
3 Africa 2000 13.2
```
4 Africa 2007 13.6
5 Europe 1980 18.8
6 Europe 1990 25.3
7 Europe 2000 26.7
8 Europe 2007 26.3
...

We may want to measure the area fold-change relative to 1980 for each region.

\begin{verbatim}
irrigation %>%
  group_by(region) %>%
  mutate(area_std_1980 = area/area[year == 1980])
# A tibble: 16 x 4
# Groups:   region [4]
   region year area area_std_1980
   <chr> <dbl> <dbl>          <dbl>
1  Africa  1980  9.3          1
2  Africa  1990 11           1.18
3  Africa  2000 13.2         1.42
4  Africa  2007 13.6         1.46
5   Europe  1980 18.8        1
6   Europe  1990 25.3        1.35
7   Europe  2000 26.7        1.42
8   Europe  2007 26.3        1.40
...
\end{verbatim}

Just like with \texttt{mutate()} we can add more transformations, like the percentage change over each time point:

> irrigation <- irrigation %>%
  group_by(region) %>%
  mutate(area_std_1980 = area/area[year == 1980],
         area_per_change = c(0, diff(area)/area[-length(area)] * 100))
> irrigation
# A tibble: 16 x 5
# Groups:   region [4]
   region year area area_std_1980 area_per_change
   <chr> <dbl> <dbl>          <dbl>            <dbl>
1  Africa  1980  9.3          1              0
2  Africa  1990 11           1.18            18.3
3  Africa  2000 13.2         1.42            20.0
4  Africa  2007 13.6         1.46            3.03
5   Europe  1980 18.8        1              0
6   Europe  1990 25.3        1.35            34.6
7   Europe  2000 26.7        1.42            5.53
8   Europe  2007 26.3        1.40           -1.50

Reiterations redo

Notice that we didn’t need any looping in the above examples. You may have intuitively wanted to apply a `for` loop to calculate aggregation or transformation functions for each region, but it’s not necessary. Avoiding for loops is somewhat of a past time in R, and is found in the base package with the apply family of functions.

Because vectorization is so fundamental to R, there’s a bit of an unofficial contest to see how few for loops you can write. We imagine some useRs have a wall sign: “Days since last for loop:” like factories have for accidents.

This means there are some very old methods for reiterating tasks, along with some newer methods which make the process more convenient.

**Table 2-5. Base package `apply` family**

<table>
<thead>
<tr>
<th>Function</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>apply()</code></td>
<td>Apply a function to each row or column of a matrix or data frame</td>
</tr>
<tr>
<td><code>lapply()</code></td>
<td>Apply a function to each element in a list</td>
</tr>
<tr>
<td><code>sapply()</code></td>
<td>Simplify the output of <code>lapply()</code></td>
</tr>
<tr>
<td><code>mapply()</code></td>
<td>The multivariate version of <code>sapply()</code></td>
</tr>
<tr>
<td><code>tapply()</code></td>
<td>Apply a function to values defined by an index</td>
</tr>
<tr>
<td><code>emapply()</code></td>
<td>Apply a function to values in an environment</td>
</tr>
</tbody>
</table>

The old school method relies on the apply family of functions, listed in Table 2-5. Except for `apply()` pronounce them all as the first letter and then apply, hence “t apply” not “tapply”. There’s a bit of a trend to disavow these workhorses of reiteration but you’ll still see them a lot, so they’re worth getting familiar with. Doing so will also help you to appreciate why the Tidyverse arose. As an example, let’s return to the aggregation functions we applied to the `PlantGrowth` data frame above. In the apply family of functions, we could
have used:

```r
> tapply(PlantGrowth$weight, PlantGrowth$group, mean)
 ctrl trt1 trt2
 5.032 4.661 5.526
> tapply(PlantGrowth$weight, PlantGrowth$group, sd)
 ctrl trt1 trt2
 0.5830914 0.7936757 0.4425733
```

You can imagine reading this as “take the weight column from the PlantGrowth data set, split the values according to the label in the group column in the PlantGrowth data set and then apply the mean function to each group of values and then return a named vector”.

Can you see how tedious this is if you want to add more functions on there? Named vectors can be convenient, but also, they are not really a typical way that you want to store important data.

One attempt to simplify this process was implemented in plyr, the precursor to dplyr. plyr is pronounced plyer like the small multifunctional hand-held tool. We use it as such:

```r
library(plyr)

ddply(PlantGrowth, "group", summarize,
 avg = mean(weight))
```

This is still sometimes used today, but has mostly been superseded by a data frame-centric version of the package, hence the d in dplyr (say d-plyer):

```r
library(dplyr)
PlantGrowth %>%
 group_by(group) %>%
 summarize(avg = mean(weight))
```

But to be clear, we could have returned a data frame with other very old functions:

```r
> aggregate(weight ~ group, PlantGrowth, mean)
group weight
 1 ctrl 5.032
 2 trt1 4.661
```
Wow, what a great function, right? This thing is super old! You’ll still see it around, and why not, once you wrap your head around it it’s elegant and gets the job done, even though it still only applies one function. However, the ongoing push to use a unified Tidyverse framework, which is easier to read and arguably easier to learn, means the ancient arts are fading into the background.

These functions existed since the early days of R and reflect, intuitively, what statisticians do all the time. The split data into chunks, defined by some property (rows, columns, categorical variables, objects), then they apply some kind of action (plotting, hypothesis testing, modelling, etc.) and then they combine the output together in some way (data frame, list, etc.). The process is sometimes called Split-Apply-Combine. Realizing that this process kept repeating itself, started to make things clearer to the community of how to start thinking about data and indeed, how to actually organize data. From this the idea of “tidy” data was born.

As a last example of iterations, you’re probably familiar with the python map() function. An analogous function can be found in the Tidyverse purrr package. This is convenient for reiterating over lists or elements in a vector but it beyond the scope of this book.

Final thoughts

In Python, you often hear about the Python way (“Pythonic”). This means the proper Python syntax and the preferred method to perform a specific action. This doesn’t really exist in R; there are many ways to go about the same thing and people will use all variety! Plus, they’ll often mix dialects. Although some dialects are easier to read than others, this hybridization can make it harder to get into the language.

Added to this is the constant tweaking of an expanding Tidyverse. Functions are tagged as experimental, dormant, maturing, stable, questioning, superseded, and archived. Couple that with relative lax standards for project-specific package management or for the use of virtual environments, and you can imagine a certain amount of growing frustration.
R officially celebrated its 20th birthday in 2020, and it’s roots are much older than that. Yet, it sometimes feels like R is currently experiencing a teenage growth spurt. It’s trying to figure out how it suddenly got a lot bigger and can be both awkward and cool at the same time. Blending the different R dialects will take you a long way in discovering its full potential.

1  *useR!* is the annual R conference and also a series of books by publisher Springer.

2  “Graphical User Interface”

3  “Integrated Development Environment”

4  Object oriented programming

5  Berliner (noun): In Berlin, a resident of the city. Everywhere else: a tasty jelly-filled, sugar-powered donut.

6  But we’ll leave a detailed exposition of model definitions for the interested reader to explore.

7  If you want to read more about the topic, check out Hadley Wickham’s paper [here](#)
Chapter 3. Python for useRs

Rick J. Scavetta

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Welcome, brave useR, to the wonderful world of the Pythonista! For many useRs, this brave new world may appear more varied — and thus more inconsistent and confusing — than what they’re used to in R. But don’t fret over diversity — celebrate it! In this chapter I’ll help you navigate through the rich and diverse Python jungle, highlighting various paths (workflows) that your Python-using colleagues may have taken, and which you may choose to explore later on. Meanwhile, know that you’ll eventually find the path that best suits you and your work environment, this will change over time and may not be the one outlined here. Like any good trek, use this route as a guide, not a rule book.

I’ll cover the essentials of the “four elements” that I mentioned in the introduction to this part: Functions, Objects, Logical Expressions and Indexing. But I’ll begin by addressing three questions.

Question 1: Which version and build (distribution) to use? There are a few different versions and builds of Python to choose from, in contrast to R.

Question 2: Which tools to use? The wide variety of IDEs, text editors and notebooks, plus the many ways of implementing virtual environments adds more choices to make.

Question 3: How does Python the language compare to R the language? Wrapping your head around an OOP-centric world, with a host of classes, methods, functions and keywords provides another barrier to entry.

I’ll address each of these questions in turn. My goal is to get you comfortable enough with reading and writing Python so that you can continue your bilingual
journey in Part III and Part IV. I’m not setting out to provide a full-fledged, deep introduction to Python for Data Science. For that purpose, visit O’Reilly’s *Python for Data Analysis* and *Python Data Science Handbook*; this chapter will help you appreciate those books even more.

If you’re eager to just get on with it and start using Python, you can skip to the section on notebooks, “Notebooks”, and visit the Google Colab notebook for the lesson on Python, or access this chapter’s script at our book repository on GitHub.

### Versions and builds

Although there are a few different distributions of R, useRs mostly stick with vanilla R obtained from [r-project.org](http://r-project.org). For Python, there are at least four common Python builds (aka distributions) to contend with. In each case you’ll also want to consider the Python version as well.

First, you’ll notice that you likely have a system version of Python already installed. On my machine, running macOS Big Sur (v11.1), I see this version of Python using the following terminal command:

```bash

$ python --version
Python 2.7.16

```

Interestingly, macOS also has **python3** built in:

```bash

$ python3 --version
Python 3.8.6

```

These are the Python installations that macOS uses internally; there’s no need to touch them.

Second, we have *vanilla* Python — the bare-bones, straight-from-the-source version of Python. At the time of writing this is version 3.9. Version 2.x is no longer supported and you should be using 3.x for future data science projects.
Until you’re sure all packages you’ll use are compatible with the latest version, it’s a safe bet to stick to the last minor update, 3.8 in this case. Indeed, you may have multiple minor versions on your system.

To install the specific version you want, visit the Python website and follow the instructions on the download page.

Installation varies depending on your system. As such, the official Python Usage and Installation guide is the authoritative resource. If you encounter installation issues, a good starting point is to perform a literal web search (encase in double quotes) for the generic part of the error message.

Table 3-1 provides other sources, but you’re well-advised to just go to the source.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Site</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td>python.org</td>
<td>Python 3 is already installed.</td>
</tr>
<tr>
<td>macOS</td>
<td>python.org</td>
<td>Use brew install python3 in the terminal.</td>
</tr>
<tr>
<td>Windows</td>
<td>python.org</td>
<td>Install Python from the Windows Store.</td>
</tr>
</tbody>
</table>

Table 3-1. Installing Python

Third, there are two common Conda builds: Anaconda (aka Conda) and miniconda. Conda offers package, dependency and environment management for several programming languages, including Python and R, although it is seldomly used for R. These open source builds include Python, a suite of packages useful for data science and a collection of IDEs (including RStudio). Anaconda comes in a free individual version plus various commercial versions. As the name suggests, miniconda is a minimal installer. We’ll see miniconda make a reappearance in the last part of the book.

The Anaconda website has detailed instructions for installation. You’ll notice that Anaconda may not come packaged with the latest version of Python. For example, at the time of writing, Anaconda comes packaged with Python 3.8, not 3.9. So this provides some justification for our preference of vanilla Python 3.8, as mentioned above. Anaconda is a popular build, but for our purposes we’ll stick with vanilla Python to avoid the extra bells & whistles that, at this point,
would only serve to distract us. Thus, I won’t consider this option further but will mention some significant differences as needed if you choose to go down this path.

Fourth, you may decide to not use a local Python installation and instead use the popular online version of Python provided by the Google Colab Notebooks interface. There are other online Notebook tools, but it’s beyond the scope of this book to detail all of them. Notebooks are akin to RMarkdown documents but JSON-based. We’ll discuss them in more detail later on.

I bet you can already guess that this early-stage diversity can result in downstream confusion when installation-specific issues arise. Moving forward, we’ll assume you have a local or cloud-based installation of Python ready to go.

**Standard tooling**

Similar to R, there are many ways to access Python. Common methods include: on the command line, IDEs, cloud-based IDEs, text editors and Notebooks. For simplicity, I’m not going to focus on executing Python on the command line. If you’re familiar with executing scripts on the command line, this is familiar territory. If not, you’ll cross that bridge when you come to it.

IDEs include JupyterLab, Spyder, PyCharm and our beloved RStudio. Cloud-Native IDEs include AWS Cloud. These are all variations on a theme, and in my experience are not typically favoured by Pythonistas, although there is a trend towards using cloud-based tools. It may sound strange that IDEs are not that popular, why not use an IDE if you have a great one available? I think the answer is two-fold. First, no IDE managed to position itself as the dominant, *de facto*, choice among Pythonistas like RStudio has among useRs. Second, because Python use cases are so varied, including often being executed on the command line itself, coding with IDEs just wasn’t attractive for many Pythonistas, especially if they came from a coding background and felt comfortable without an IDE. For me, this feeds a bit into a narrative that says Python is both more difficult and better than R. Both are incorrect! Sorry :/

Nonetheless, you may be tempted to begin using Python with a comfortable-looking IDE. Here, we make the argument that text editors will serve you better in the long run. We’ll get back to RStudio in the last part of the book as we bring
Python and R together in a single script. For now, try to resist the urge to default to an IDE but watch for developments in cloud-platforms that may direct future trends.

**Text editors**

Text editors are the most common and seemly preferred tool for composing pure Python scripts. There are a host of fantastic text editors to choose from, waxing and waning in popularity year-on-year. Sublime, Atom, Visual Studio Code (VS Code) and even the ur-editors vim and emacs, among many others, are in common use. Nonetheless, VS Code, an open-source editor developed and strongly supported by Microsoft has emerged in the past few years as the top choice. A marketplace for extensions means that the editor provides strong and easy support for a variety of languages, including Python and R\(^4\). Thus, we’ll focus on VS Code. Your first exercise is to obtain and install VS code.

The first time you open VS Code, you’ll be greeted with the welcome screen shown in Figure 3-1).
Start
New file
Open folder... or clone repository...

Recent
No recent folders

Help
Printable keyboard cheatsheet
Introductory videos
Tips and Tricks
Product documentation
GitHub repository
Stack Overflow
Join our Newsletter

Customize
Tools and languages
Install support for JavaScript, Python, Java, PHP, Azure, Docker and...

Settings and keybindings
Install the settings and keyboard shortcuts of Vim, Sublime, Atom an...

Color theme
Make the editor and your code look the way you love

Learn
Find and run all commands
Rapidly access and search commands from the Command Palette (...)

Interface overview
Get a visual overlay highlighting the major components of the UI

Interactive playground
Try out essential editor features in a short walkthrough
When you click on the blank document icon in the upper left, you’ll be requested to open a folder or clone a git repository (from GitHub, for example). We’ll choose an empty folder called `Intro_python` that we’ve already created. Opening this folder is like opening a project in RStudio. Here, we can click on the new document icon and we’ll be tasked with giving the new document a name. Call the file `helloworld.py`, like in Figure 3-2.
Because of the file extension, VS Code has automatically detected that you want to use a Python interpreter for this document. VS Code, like many other text editors, can execute code directly from the document if it knows which interpreter to use. Notice in Figure 3-2 (lower-right) that VS Code will automatically ask you to install the appropriate extensions for Python since we don’t have them installed (and that the footer bar has turned from purple to blue, noting the use of a Python interpreter). You are encouraged to visit the marketplace and consider other extensions on your own, but less is more, mostly.

In Figure 3-3 the extension homepage is displayed as the package installs. Note that this extension is developed and maintained directly by Microsoft, like VS Code itself, so we’re in good hands.\(^5\)
Python extension for Visual Studio Code

A Visual Studio Code extension with rich support for the Python language for all actively supported versions of the language: >=3.6, including features such as IntellSense, linting, debugging, code navigation, code formatting, Jupyter notebook support, refactoring, variable explorer, test explorer, snippets, and more!

Quick start

- **Step 1.** Install a supported version of Python on your system (note: that the system install of Python on macOS is not supported).
- **Step 2.** Install the Python extension for Visual Studio Code.
- **Step 3.** Open or create a Python file and start coding!

Set up your environment

- Select your Python interpreter by clicking on the status bar
After the extension is installed, you’ll be greeted with the extension welcome page, displayed in Figure 3-4. The blue footer now notes the actual Python version that you’re using. Remember that you may have many different versions installed on your system, here I’m using v3.8.6.
Python Extension

Create a Jupyter Notebook
- Run "Create New Blank Jupyter Notebook" in the Command Palette (Shift + Command + P)
- Explore our sample notebook to learn about notebook features

Create a Python File
- Create a new file with a .py extension

Open a Folder or Workspace
- Open a Folder
- Open a Workspace

Use the Interactive Window to develop Python Script
- You can create cells on a Python file by typing "%%%
- Use "Shift + Enter" to run a cell, the output will be shown in the interactive window

Take a look at our Getting Started to learn more about the latest features
The first item on the extension’s welcome page is “Create a Jupyter Notebook”. We’ll get to that soon enough; for now, it’s worth noting that we can use VS Code for both scripts and Notebooks. Also note that the first bullet point in that item tells us that to open a Notebook we should run a command in the Command Palette, which you can access by the keyboard shortcut `shift + cmd + P` on a Mac (or `shift + ctrl + P` on a PC). Return back to the `helloworld.py` file and use this keyboard shortcut to open the Command Palette. This is where you’ll execute all variety of commands to make your life as a Pythonista easier. The Command Palette is a relatively new feature in RStudio but has been a standard way to navigate text editors for quite a while. Each extension you install from the marketplace will add more commands that you can access here. Our first command will be to Create New Integrated Terminal (in Active Workspace). You can get this by simply beginning to type the command and then let auto-complete work its magic. Make sure you choose the (in Active Workspace) option. Remember, this is like an RStudio project, so we want to remain in our Active Workspace.

You’ll notice that this opens a new terminal pane at the bottom of the screen (Figure 3-5). OK, let’s admit that this is starting to look more and more like an IDE, but let’s not get too excited!
So by now we’ve settled on a text editor and we have our first (empty) Python script. It looks like we’re ready to go — but not quite! We must address two crucial factors that you’ll encounter each time you want to create a new Python project:

- Virtual (development) environments, and
- Installing packages

**Virtual environments**

Most useRs are accustomed to using RStudio projects, which keep the working directory tied to the project directory. These are convenient, in that we don’t need to hard-code paths and are encouraged to keep all data and scripts in one directory. You’ll already have that when opening an entire folder in a VS Code workspace.

A major downside of R projects and VS Code workspaces is that they don’t provide portable, reproducible development environments! Many useRs have a single, global installation of each package (see `.libPaths()`) and rarely specify a specific R version.

Now, dear useR, let’s be honest with each other: if you haven’t already, at some point you’ll encounter the problem of package version conflicts. You’ve updated a package globally and now an old script is defunct because it’s calling a deprecated function, or using a function’s default arguments that have since changed, or for any number of other reasons due to package version conflicts. This is a surprisingly common occurrence in R and is a truly dismal practice when working over a long period of time or collaboratively. There have been many attempts to implement some kind of controlled development environment in R over the years. The most recent, and hopefully the solution that will finally stick, is renv. If you haven’t kept up with developments there, please visit the [package website](https://renv.rstudio.com) from RStudio.

Pythonistas have long used virtual environments to maintain future compatibility of their projects, a sign of the programming-first approach of Python’s origins.
Here, a virtual environment is simply a hidden sub-directory within a project folder, called e.g. .venv. The . is what makes it hidden. You have many hidden files and directories all over your computer and for the most part they’re hidden because you have no business sticking your fingers in there. Inside .venv you’ll find the packages used in this specific project, and information about which Python build this project uses. Since each project now contains a virtual environment with all the packages and the appropriate package versions (!), you’re guaranteed that the project will continue working indefinitely, so long as that virtual environment exists. We can visualize the potential dependency issues between different machines as in Figure 3-6, which highlights the benefit of having a single “source of truth” regarding package versions.
Like everything in Python there are many ways to make a virtual environment. We can use the `venv` or `virtualenv` packages. If you’re using Anaconda you’ll use the `conda` alternative which we won’t cover here. There are some subtle differences between `venv` and `virtualenv`, but at this point in the story they are irrelevant; let’s just stick with `venv`. In your new terminal window execute one of the commands in Table 3-2 depending on your platform, as I’ve done in Figure 3-7.

Table 3-2. Creating (and activating) a virtual environment with `venv`.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Create</th>
<th>Activate (prefer VS Code auto-activate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>macOS X &amp; Linux</td>
<td><code>python3 -m venv .venv</code></td>
<td><code>source .venv/bin/activate</code></td>
</tr>
<tr>
<td>Windows</td>
<td><code>py -3 -m venv .venv</code></td>
<td><code>.venv\scripts\activate</code></td>
</tr>
</tbody>
</table>
After creating the virtual environment, you must activate it. The terminal commands for this are given in Table 3-2 but it’s more convenient to let VS Code do what it does best. It will automatically detect your new virtual environment and ask if you want to activate it (see Figure 3-8). Go for it! Notice that the Python interpreter in the lower left will also explicitly mention (.venv): venv (Figure 3-9).
```
We noticed a new virtual environment has been created. Do you want to select it for the workspace folder?
```

Source: Python [Extension]  Yes  No  Do not show again
If you are asked to install the Linter pylint, go ahead and confirm that also. This is how VS Code will be able to spot errors in your scripts.

We’ll get to package installation in a second, for now let’s try to execute our first “Hello, world!” command. Return to your empty `helloworld.py` file and type:

```python
%%
print('Hello, world!')
```

Actually the print is not necessary, but it makes what we’re trying to do explicit. That looks a lot like a simple R function, right? The `#%%` is also not necessary but it’s a lovely feature of the Python extension in VS Code, and is highly recommended! Typing `#%%` allows us to break up our long script into executable chunks. It’s akin to R Markdown chunks, but much simpler and used in plain Python scripts. To execute the command, press `shift + enter` or click on the `run cell` text, as seen in Figure 3-9.
Figure 3-9. Executing your first code in Python.

You’ll be promptly asked to install the ipyKernel, fig. Figure 3-9 (lower-right). Confirm that, and you’ll get the output present in the new upper-right pane, visible in Figure 3-10.
```python
print("Hello, world!")
```

Type code here and press shift-enter to run.
Alright, now we’re in business. That seems like a lot of work, but once you do it a couple times you’ll develop a routine and get the hang of it!

**Installing packages**

So far in the story we have installed some version of Python and accessed a workspace, like an R project, from within VS Code. We’ve also created a virtual environment, which we’re now ready to populate with our favorite data science packages. If you took the **conda** route, you’ll have used different commands but you’ll also be set to go with the most common data science packages pre-installed. That sounds really nice, but you may find that when you need to collaborate with other Python developers, e.g. data engineers or system administrators, they probably won’t be using Anaconda. We feel that there’s also something to be said for getting to the heart of Python without all the bells and whistles that Anaconda provides. Thus we’ve gone the vanilla route.

Before we get into packages, let’s review some necessary terminology. In R, a library is a collection of individual packages. The same holds true for Python, but the use of *library* and *package* is not as strict. e.g. *pandas*, the package which provides the **DataFrame** class of objects, is referred to as both a library and a package on the pandas website itself. This mixture of the terms is common among Pythonistas, so if you’re a stickler for names, don’t let it confuse or bother you. However, modules are useful to note. A package is a collection of modules. This is useful to know since we can load an entire package or just a specific module therein. Thus, in general: library > package > module.

In R, you’d install packages from CRAN with the `install.packages()` function from within R itself. In Python, there are two equivalents of CRAN, PyPI (the Python Package Installer) for when using vanilla Python and **conda**, for when using Anaconda or miniconda (we’ll also see how to install packages in Google Colab directly in the online Notebook later on). To install packages from PyPI using vanilla Python, you’ll have to execute a command in the terminal. Recall that we still have our active terminal window in VS Code open from earlier. Execute the command `pip install matplotlib` in the
terminal to install the `matplotlib` package in your virtual environment, as depicted in Figure 3-11. `pip` is the package installer for Python and also comes in various versions.
```python
print("Hello, world!")
```

```
Hello, world!
```
Figure 3-11. Installing a package into a virtual environment using the command line.

Packages that you’ll install in practically every virtual environment include numpy, pandas, matplotlib, seaborn, and scipy. You won’t have to install all of them all the time since their package dependencies will take care of that. If they are already installed, pip will tell you and will not install anything further. The most common error messages you’ll encounter here are when your package version is incompatible with your Python version. For this, you can either use a different Python kernel for your project, or specify the exact package version you want to install. Like in R, you just need to install the package once, but you’ll need to import it every time (i.e. initialize it) you activate your environment (see above). It seems convenient that package installation is done in the terminal, separate from importing in the script. You’ve probably seen many stray install.packages() functions in R scripts, which is kind of annoying.

There are two more important points I want to mention. First, check all the packages installed in your environment, and their versions, in the terminal with:

---

```
$ pip freeze
```

---

Second, pipe this output to a file called requirements.txt by executing the following command:

---

```
$ pip freeze > requirements.txt
```

---

Other users can now use requirements.txt to install all the necessary packages by using the following command:

---

```
$ pip install -r requirements.txt
```

---

**Notebooks**
If you’ve followed the tutorial thus far you’re ready to proceed to the third question and begin exploring the Python language. Nonetheless, it’s worthwhile reviewing Notebooks, so read on. If you had a hard time getting Python set up locally, don’t fret! Jupyter Notebooks is where you can take a deep breath, set your installation issues aside and jump in afresh.

Jupyter Notebooks are built on the backbone of IPython, which originated in 2001. Jupyter, which stands for JUlia, PYThon and R, now accommodates dozens of programming languages and can be used in the JupyterLab IDE or straight-up Notebooks in Jupyter. Notebooks allow you to write text using markdown, add code chunks and see the in-line output. It sounds a lot like R Markdown! Well, yes and no. Under the hood an R Markdown is a flat text file that gets rendered as an HTML, doc or pdf. Notebooks are exclusively JSON-based HTML and can natively handle interactive components. For useRs, this is kind of like an interactive R Markdown with a shiny run-time by default. This means that you don’t compose a Notebook as a flat text file, which is an important distinction when considering editing potential.

Coding in Python often consists of pure notebooks. For example, if you venture into cloud platforms that work with big data for ML, like AWS Sagemaker, Google AI Platform or Azure ML Studio, you’ll start with notebooks. As we’ve already seen, they’re supported by VS Code. Other online versions include Kaggle competitions and published Jupyter Notebooks. Another variety of online notebooks is found in the Google Colab service. This allows you to produce and distribute online notebooks with a Python backend and is what we’ll use for exploring notebooks.

To get familiar working with Notebooks, use this online tutorial from Jupyter here. Just click on the Notebook Basics panel and pay particular attention to the keyboard shortcuts.

You you want to follow along, you can find the Google Colab Notebook for this chapter here.
Welcome To Colaboratory

Examples
Recent
Google Drive
GitHub
Upload

Filter notebooks

Title

- Overview of Colaboratory Features
- Markdown Guide
- Charts in Colaboratory
- External data: Drive, Sheets, and Cloud Storage
- Getting started with BigQuery

NEW NOTEBOOK  CANCEL
How does Python, the language, compare to R?

By now you should have followed one of two paths. If you have installed Python locally, you should have:

1. A project directory where you’ll store your data and script files.
2. A virtual environment set up within that directory.
3. The typical packages for data science installed in that virtual environment.

If you’ve decided to go the Google Colab route, you should have accessed this chapter’s Notebook (see above).

Now it’s time to start our project by importing the packages we’ll use. Here, we’ll see again that there are a variety of ways of doing this, but most are standard. Let’s take a look. In the book’s repository, you’ll find a practice script with the following commands, or you can follow along in the Google Colab Notebook.

As we go through these commands we’ll introduce more new terminology — keywords, methods & attributes — and discuss what they are in the context of Python.

First, we can import an entire package:

```python
import math # Functions beyond the basic maths
```

This allows us to use functions from the `math` package. The `math` package is already installed, so we didn’t need to use `pip`, but we do need to import it.

This is first time we encounter a common and important aspect of the Python language: *keywords*, which behave like R’s reserved word but are more numerous. Right now there are 35 keywords in Python that can be placed in distinct groups (See Appendix A). Here `import` is an *import keyword*. As a useR accustomed to functional programming, you’d use `library(math)` in R. So, in this case, you can think of keywords as shortcuts to functions, which in
many cases they are. That’s just like operators in R (think <-, +, ==, &, etc.),
which are just shortcuts to functions under-the-hood. they’re not written in the
classic function format, but they could be.

In short, keywords are reserved words that have very specific meanings. In this
case, import stands in for a function to import all the functions from the math
package. Many keywords act like this, but not all. We’ll see some examples in a
second.

But first, now that we have the functions from the math package, let’s try this:

```python
math.log(8, 2)
```

Here we see that the . has a specific meaning: Inside the math package, access
the log() function. The two arguments are the digit and base. So you can see
why the R Tidyverse tends to use _ instead of . notation and why the prevalence
of a meaningless . in many R functions frustrates many users coming from
OOP-centric languages.

Second, we can import an entire package and give it a specific, typically
standardized, alias.

```python
import pandas as pd # For DataFrame and handling
import numpy as np # Array and numerical processing
import seaborn as sns # High level Plotting
```

There’s our second keyword, as. Notice that it’s not really acting as a stand in
for a function unless we recall that <- is also a function. If we stretch our
imagination we can imagine this is like the following in R:

```r
dp <- library(dplyr) # nonsense, but just as an idea
```

UseRs wouldn’t ever do that, but it’s the closest analogous command⁸. The as
keyword is always used with import to provide a convenient alias for
accessing a package or module’s functions⁹. Thus, it’s an explicit way to call the
exact function we want. Execute this function to import the data set for future
work:

```python
plant_growth = pd.read_csv('ch03-py4r/data/plant_growth.csv')
```
Notice the . again? The above command is equivalent to this command in R:

```r
plant_growth <- readr::read_csv("ch03-py4r/data/plant_growth.csv")
```

Third, we can import a specific `module` from a package:

```python
from scipy import stats # e.g. for t-test function
```

There’s our third keyword, `from`. It lets us go inside the `scipy` package and `import` only the `stats` module.

Fourth, we can import a specific module from a package, also giving it a specific, typically standardized, alias.

```python
import matplotlib.pyplot as plt # Low level plotting
import statsmodels.api as sm # Modeling, e.g. ANOVA
```

Finally, we can also import only a specific function from a package:

```python
from statsmodels.formula.api import ols # For ordinary least squares regression
```

**Import a dataset**

Above, we saw how to import a data set using a function from the `pandas` package:

```python
plant_growth = pd.read_csv('ch03-py4r/data/plant_growth.csv')
```

**Examine the data**

It’s always good practice to look at our data before we start working on it. In R we’d use things like `summary()` and `str()`, or `glimpse()` if we had `dplyr` initialized. Let’s see how that works in Python.

```python
plant_growth.info()
```

```
class 'pandas.core.frame.DataFrame'
RangeIndex: 30 entries, 0 to 29
Data columns (total 2 columns):
```
What the what?? This is the first time we’ve encountered this nomenclature, and there’s that ever-present dot notation again! The functions `info()`, `describe()` and `head()` are *methods* of the object `plant_growth`. A method is a function that is called by an object. Like other functions we can also provide specific arguments, although in these cases we’ll stick with the default.

Note, in particular the output from the `info()` method. Here, we see for the first time that indexing begins as 0 in Python, as is the case with many programming languages — and why shouldn’t it!? This is an important aspect of Pythonic programming. We’ll see the consequences of this later on when we get to indexing.

The output from `.info()` also tells us that we have a *pandas DataFrame*. We’ll explore different object classes soon.

How about looking at the shape (i.e. dimensions) and column names of the
plant_growth object?

```
plant_growth.shape
(30, 2)
```

```
plant_growth.columns
Index(['weight', 'group'], dtype='object')
```

In this case, we are calling attributes of the object, they don’t receive any brackets. So here we see that any given object can call permissible methods and attributes, according to its class. You’ll know this from R, when the class of an object allows it to be used in specific functions for which there are methods available for it. Under the hood the same magic is happening. R is function-first, OOP-second. It’s there, just we don’t need to worry about it as much in functional programming. To give you an idea of how this works in R, consider a built-in data set, sunspots. It’s a ts class object (i.e. time-series).

```
in R
class(sunspots)
[1] "ts"
plot(sunspots)
```

You can find the methods for the plot function using:

```
in R
methods(plot)
```

There, you’ll see the plot.ts() method, which is what is actually called when you provide a ts class object to the plot() function.

Finally, you may miss being able to actually see that data set like we can with the RStudio view option. Not to worry! You can click on the table icon in the interactive Python kernel and see everything in your environment. If you click on the DataFrame, it will open up a view for you to examine it.

**Data Structures & Descriptive Statistics**
Alright, now that we’ve come to grips with methods and attributes, let’s take a look at how you would generate some descriptive statistics. A pandas DataFrame is very similar to an R data.frame or tbl. It’s a 2-dimensional table where each column is a Series, like how columns are vectors of the same length in R data frames. Just like a DataFrame itself, a Series also has methods and attributes. Recall that the group column is categorical. By now, this command should make sense to you:

```
plant_growth['group'].value_counts()
```

```
trt2 10
trt1 10
ctrl 10
Name: group, dtype: int64
```

The [] will be familiar to you from R, they index according to the name of a column. The . then takes this single column and calls a method, .value_counts(), which in this case counts the number of observations for each value.

How about this:

```
np.mean(plant_growth['weight'])
```

np says we’re going to use a function from the numpy package we imported earlier. Inside that function, we provide numerical values, the weight Series of the plant_growth DataFrame.

How about some summary statistics. Can you guess what this method will do?

```
summary statistics
plant_growth.groupby(['group']).describe()
```

Just like with dplyr’s group_by() function, the groupby() method will allow downstream methods to be applied on each subset according to a categorical variable, in this case the group Series. The describe() method will provide a suite of summary statistics for each subset.

This version is more specific:
You can probably guess that the `agg()` method stands for _aggregate_. Aggregation functions return a single value (typically) and in R we’d specify it using the `summarise()` function.

The input to the `.agg()` method, `{ 'weight': ['mean', 'std'] }`, is a Dictionary (class `dict`). You can think of this as a key-value pair, defined here using `{}`:

```python
{ 'weight': ['mean', 'std'] }
```

We could also have used the `dict()` function for the same purpose:

```python
dict([['weight', ['mean', 'std']]])
```

Dictionaries are data storage objects in their own right, are part of standard vanilla Python, and as we see here are used as arguments to input in methods and functions. This is similar to how lists in R are used for both data storage and as a list of arguments in specific circumstances. Nonetheless, a Dictionary is better thought of as an _associative array_ since indexing is only by key, and not number. I may go so far as to say that a dictionary is even more like an environment in R, since that contains many objects but no indexing, but that may be a bit of a stretch.

Let’s dig a bit deeper. The following commands produce the same output, but in different formats!

```python
Produces Pandas Series
plant_growth.groupby('group')['weight'].mean()

Produces Pandas DataFrame
plant_growth.groupby('group')['weight'].mean()
```

Notice the `[[ ]]` versus `[]`? It recalls a difference that you may have encountered in R when working with data frames that are not tibbles.

**Data structures: Back to the basics**
We’ve already seen three common types of data storage objects in Python, pandas DataFrame, pandas Series and dict. Only dict is from vanilla Python so before we more on, I want to look as some of the other basic structures: lists, tuples and NumPy arrays. I’m introducing these much later than you’d expect, that’s because I wanted to begin with data frames, which are intuitive and frequently used. So let’s make sure we have basics covered before we wrap up:

First, like in R, you’ll see four key data types in Python:

**Table 3-3. Data types in Python.**

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>bool</td>
<td>Binary</td>
<td>True and False</td>
</tr>
<tr>
<td>int</td>
<td>Integer numbers</td>
<td>7,9,2,-4</td>
</tr>
<tr>
<td>float</td>
<td>Real numbers</td>
<td>3.14, 2.78, 6.45</td>
</tr>
<tr>
<td>str</td>
<td>String</td>
<td>All Alphanumeric and special characters</td>
</tr>
</tbody>
</table>

Next, you’ll encounter lists, one-dimensional objects. Unlike vectors in R, each element can be a different object, e.g. another 1 dimensional list. Here’s are two simple lists:

```python
cities = ['Munich', 'Paris', 'Amsterdam']
dist = [584, 1054, 653]
```

Notice that the [] define a list. We actually already saw that when we defined the dict earlier:

```python
{ 'weight': ['mean', 'std'] }
```

So both [] and {} alone are valid in Python and behave differently than in R. But remember, we did use [] earlier to index the data frame, which is very similar to R.

```python
plant_growth['weight']
```
Finally, we have tuples, which are like lists, except they are immutable, i.e. unchangeable, they are defined by (), as such:

('Munich', 'Paris', 'Amsterdam')

A common use of tuples is when a function returns multiple values. As an example, the `divmod()` function returns the result of integer division and modulus of two numbers:

```python
divmod(10, 3)
```

The result is a tuple, but we can unpack the tuple and assign each output to a separate object:

```python
int, mod = divmod(10, 3)
```

That’s really convenient when defining custom functions. The equivalent in R would be to save the output to a list.

Astute useRs may be familiar with the multiple assign operator, `%<-%` introduced by the zealot package and popularized by the keras.

The last data structure I want to mention is the NumPy array. This is very similar to a 1-dimensional list, but allows for vectorization, among other things. e.g.:

```python
A list of distances
>>> dist
[584, 1054, 653]
Some transformation function
>>> dist * 2
[584, 1054, 653, 584, 1054, 653]
```

That’s very different from a useR would expect. If we were working on an NumPy array, we’d be back in familiar territory:

```python
Make a numpy array
>>> dist_array = np.array(dist)
>>> dist_array * 2
array([[1168, 2108, 1306]])
```
Indexing and Logical Expressions

Now that we have a variety of objects, let's look at how to index them. We already saw that we can use [] and even [[]] as we see in R, but there are a couple interesting differences. Remember that indexing always begins at 0 in Python! Also, notice that one of the most common operators in R, : make a reappearance in Python, but in a slightly different form, here it’s [start:end]

```python
>>> dist_array
array([584, 1054, 653])
```

```python
>>> dist_array[:2]
array([584, 1054])
```

```python
>>> dist_array()
array([1054, 653])
```

The : operator doesn't need a left and right-hand side. If one side is empty the index begins or proceeds to the end. The start in *inclusive* and the end, if specified, is *exclusive*. Thus :2 takes index 0 & 1, 1: takes index 1 up to the last element, which is unspecified and thus inclusive.

For 2-dimensional data frames, we encounter the pandas .iloc, “index location” and .loc “location” methods.

```python
Rows: 0th and 2nd
>>> plant_growth.iloc[[0,2]]
weight group
 0 4.17 ctrl
 2 5.18 ctrl
```

```python
Rows: 0th to 5th, exclusive
Cols: 1st
>>> plant_growth.iloc[:5, 0]
 0 4.17
 1 5.58
 2 5.18
 3 6.11
 4 4.50
```

For the .loc(), we can introduce logical expressions, i.e. combinations of relational and logical operators to ask and combine True/False questions.
For more detail on indexing and logical expressions, see the notes in the appendix.

**Plotting**

Alright, let’s take a look at some data visualization of weight described by group. Here, we have a box plot:

```
sns.boxplot(x='group', y='weight', data=plant_growth)
plt.show()
```

Just the points:

```
sns.catplot(x="group", y="weight", data=plant_growth)
plt.show()
```

And just the means with their standard deviations:

```
sns.catplot(x="group", y="weight", data=plant_growth, kind="point")
plt.show()
```

Notice that I’m using the `seaborn` package (alias `sns`) for data visualizations and then using `show()` function from `matplotlib` to print the visualization to the screen.

**Inferential statistics**

In this dataset, we have a specific set-up in that we have three groups and we’re interested in two specific two-group comparisons. We can accomplish this by establishing a linear model.

```
fit a linear model
specify model
model = ols("weight ~ group", plant_growth)
```
# fit model
results = model.fit()

We can get the coefficients of the model directly:

# extract coefficients
results.params.Intercept
results.params['group[T.trt1]']
results.params['group[T.trt2]']

Finally, let’s take a look at a summary of our model:

# Explore model results
results.summary()

Alright, let’s wrap this up by using a typical statistical test for this type of data: a 1-way ANOVA. Notice that we’re using our model, results, that we fitted above.

# ANOVA
# compute anova
aov_table = sm.stats.anova_lm(results, typ=2)

# explore anova results
aov_table
print(aov_table)

If we want to do all pair-wise comparisons, we can turn to Tukey’s Honestly Significant Differences (HSD) post-hoc test:

from statsmodels.stats.multicomp import pairwise_tukeyhsd
print(pairwise_tukeyhsd(plant_growth['weight'], plant_growth['group']))

In this instance, we’re starting with the statsmodel library, taking the stats package and the multicomp module therein and extracting from that only the specific pairwise_tukeyhsd() function to import. In the second line we execute the function with a continuous variable as the first argument and the grouping variable as the second argument.
Final thoughts

In R, there has been a convergence on common practices and workflows since circa 2016. In Python, there is a lot more diversity in how to get up and running right from the word go. This diversity may seem daunting but it’s just a reflection of Python’s origin story and use cases in the real-world.

If you’re a useR accustomed to the world of functional programming, wrapping your head around OOP methods can also seem pretty daunting, but once you get over that hurdle you can start exploiting the power of Python where it truly shines, the topic of Part III.

---

1. Indeed, the other builds are seldom mentioned in proper company.
2. You’ll need to install homebrew if you want to go that route for macOS.
3. You’ll need a Google account to access this free resource.
4. Again, although R is supported, useRs seldom work in VS Code.
5. Well, we’re in somebody’s hands, at least!
6. Astute userRs may have noticed that a Command Palette, invoked with the same keyboard shortcuts, was added to RStudio v1.4 in late 2020.
7. The Python execution backend.
8. But remember this for when we start using Python & R together, because we’ll see something very similar.
9. Referring back to log(), you’re more likely to use np.log() instead of math.log() since it accepts a wider variety of input types.
In this part you’ll get your hands dirty and get a tour of applications of both languages in a modern context, in terms of the open-source ecosystem and useful workflows.

These are the two dimensions that we need to cover to get a coherent view. By going through both you will obtain a clear picture when and where to use which language, open source package and workflow.

Chapter 4

In this chapter, we’ll go through how the variety of different data formats (i.e. image or text) are processed by different packages and which are the best ones.

Chapter 5

This chapter covers the most effective modern workflows (i.e. machine learning and visualization) for productive work for both R and Python.
Chapter 4. Data Format Context

Boyan Angelov

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

In this chapter we’ll review tools in Python and R for importing and processing data in a variety of formats. We’ll cover a selection of packages, compare and contrast them, and highlight the properties that make them effective. At the end of this tour, you’ll be able to select packages with confidence. Each section illustrates the tool’s capabilities with a specific mini-case study, based on tasks that a data scientist encounters daily. If you’re transitioning your work from one language to another, or simply want to find out how to get started quickly using complete, well-maintained and context-specific packages this chapter will guide you.

Before we dive in, remember that the open-source ecosystem is constantly changing. New developments, such as transformer models and xAI, seem to emerge every other week. These often aim at lowering the learning curve and increasing developer productivity. This explosion of diversity also applies to related packages, resulting in a nearly constant flow of new and (hopefully) better tools. If you have a very specific problem, there’s probably a package already available for you, so you don’t have to reinvent the wheel. Tool selection can be overwhelming, but at the same time this variety of options can improve the quality and speed of your data science work.

The package selection in this chapter can appear limited in view, hence it is essential to clarify our selection criteria. So what qualities should we look for in a good tool?

- It should be open source: there is a large number of valuable
commercial tools available, but we firmly believe that open source tools have a great advantage. They tend to be easier to extend and understand what their inner workings are, and are more popular.

- It should be **feature-complete**: the package should include a comprehensive set of functions that help the user do their fundamental work without resorting to other tools.

- It should be **well-maintained**: one of the drawbacks of using Open Source Software (OSS) is that sometimes packages have a short lifecycle, and their maintenance is abandoned (so called “abandonware”). We want to use packages which are actively worked on, so we can feel confident they are up-to-date.

Let’s begin with a definition. What is a “data format”? There are several answers available. Possible candidates are *data type*, *recording format* and *file format*. *Data type* is related to data stored in databases or types in programming languages (for example integer, float or string). The *recording format* is how data is stored in a physical medium, such as CD or DVD. And finally, what we’re after, the *file format*, i.e. how information is prepared for a computing purpose.

With that definition in hand, one might still wonder why should we dedicate an entire chapter to focus just on file formats? You have probably been exposed to them in another context, such as saving a PowerPoint slide deck with a `.ppt` or `.pptx` extension (and wondering which one is better). The problem here goes much further beyond basic tool compatibility. The way information is stored influences the complete downstream data science process. For example, if our end goal is to perform advanced analytics and the information is stored in a text format, we have to pay attention to factors such as character encoding (a notorious problem, especially for Python\(^1\)). For such data to be effectively processed, it also needs to go through several steps\(^2\), such as *tokenization* and *stop word* removal. Those same steps are not applicable to image data, even though we may have the same end goal in mind, e.g. classification. In that case other processing techniques are more suitable, such as resizing and scaling. These differences in data processing pipelines are shown on ????. To summarize: the data format is the most significant factor influencing what you can, and
cannot do with it.

NOTE
We now use the word “pipeline” for the first time in this context, so let’s use the opportunity to define it. You have probably heard the expression that “data is the new oil”. This expression goes beyond a simple marketing strategy and represents a useful way to think about data. There are surprisingly many parallels between how oil and data are processed. You can imagine that the initial data that the business collects is the rawest form - probably of limited use initially. It then undergoes a sequence of steps, called data processing, before it’s used in some application (i.e. for training an ML model or feeding a dashboard). In oil processing this would be called refinement and enrichment - making the data usable for a business purpose. Pipelines transport the different oil types (raw, refined) through the system to its final state. The same term can be used in data science and engineering to describe the infrastructure and technology required to process and deliver data.

1. difference between common data format pipelines. The green color indicates the shared steps between the workflows.

   image::img/pipelines_diff.jpg["""]

Infrastructure and performance also need to be taken into consideration when working with a specific data format. For example, with image data, you’ll need more storage availability. For time-series data you might need to use a particular database, such as Influx DB. And finally, in terms of performance, image classification is often solved using deep learning methods based on Convolutional Neural Networks (CNNs) which may require a Graphics Processing Unit (GPU). Without it, model training can be very slow and become a bottleneck both for your development work and a potential production deployment.

Now that we covered the reasons to carefully consider which packages to use, we’ll have a look at the possible data formats. This overview is presented in Table 4-1 (note that those tools are mainly designed for small to medium size datasets). Admittedly, we are just scratching the surface on what’s out there, and there are a few notable omissions (such as audio and video). Here, we’ll focusing on the most widely used formats.

Table 4-1. An overview of data formats and popular Python and R packages used to process data stored in them.
<table>
<thead>
<tr>
<th>Data type</th>
<th>Python package</th>
<th>R package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabular</td>
<td>pandas</td>
<td>readr, rio</td>
</tr>
<tr>
<td>Image</td>
<td>open-cv, scikit-image, PIL</td>
<td>magickr, imager, EBImage</td>
</tr>
<tr>
<td>Text</td>
<td>nltk, spaCy</td>
<td>tidytext, stringr</td>
</tr>
<tr>
<td>Time series</td>
<td>prophet, sktime</td>
<td>prophet, ts, zoo</td>
</tr>
<tr>
<td>Spatial</td>
<td>gdal, geopandas, pysal</td>
<td>rgdal, sp, sf, raster</td>
</tr>
</tbody>
</table>

This table is by no means exhaustive, and we are certain new tools will appear soon, but those are the workhorses fulfilling our selection criteria. Let’s get them to work in the following sections, and see which ones are the best for the job!

**External versus base packages**

In Chapter 2 and Chapter 3, we introduced packages very early in the learning process. In Python we used pandas right at the outset and we also transitioned to the tidyverse in R relatively quickly. This allowed us to be productive much faster than if we went down the rabbit holes of archaic language features that you’re unlikely to need as a beginner. A programming language’s utility is defined by the availability and quality of it’s third-party packages, as opposed to the core features of the language itself.

**NOTE**

This is not to say that the aren’t a lot of things that you can accomplish with just base R (as you’ll see in some of the upcoming examples), but taking advantage of the open-source ecosystem is a fundamental skill to increase your productivity and avoid reinventing the wheel.

**GO BACK AND LEARN THE BASICS**

There is a danger in overusing third-party packages, and you have to be aware of when the right time to go back to the basics is. Otherwise you might fall victim to a false sense of security, and become reliant on the training wheels provided by tools such as pandas. This might lead to difficulties when dealing with more specific real-world challenges.
Let’s now see this package vs. base language concept plays out in practice by going into detail with a topic we’re already familiar with: tabular data. There are at least two ways to do this in Python. First, using pandas:

```python
import pandas as pd

data = pd.read_csv("dataset.csv")
```

Second, with the built-in `csv` module:

```python
import csv

with open("dataset.csv", "r") as file:
 reader = csv.reader(file, delimiter=",")
 for row in reader:
 print(row)
```

1. Note how you need to specify the `file mode`, in this case "r" (standing for “read”). This is to make sure the file is not overwritten by accident, hinting at a more general-purpose oriented language.

2. Using a loop to read a file might seem strange to a beginner, but it’s making the process explicit.

This example tells us that `pd.read_csv()` in pandas provides a more concise, convenient and intuitive way to import data. It is also less explicit than vanilla Python and not essential. `pd.read_csv()` is, in essence, a *convenience wrapper* of existing functionality — good for us!

Here we see that packages serve two functions. First, as we have come to expect, they provide *new* functionality. Second, they are also convenience wrappers for existing standard functions, which make our lives easier.

This is brilliantly demonstrated in R’s rio package. rio stands for “R input/output” and it does just what it says. Here, the single function `import()` uses the file’s filename extension to select the best function in a collection of packages for importing. This works on Excel, SPSS, stata, SAS or many other formats commonly seen.
Another R tidyverse package, \texttt{vroom} allows for fast import of tabular data, and can read an entire directory of files in one command, with the use of \texttt{map()} functions or \texttt{for} loops.

Finally, the \texttt{data.table} package, which is often neglected at the expense of promoting the tidyverse, provides the exceptional \texttt{fread()} which can import very large files at a fraction of what base R or \texttt{readr} offer.

The usefulness of learning how to use a third-party packages becomes more apparent when we try to perform more complex tasks, as we’ll see next when processing other data formats.

\begin{table}[h]
\centering
\caption{An overview of the different use-cases}
\begin{tabular}{ll}
\hline
Data format & Use case \\
\hline
\end{tabular}
\end{table}
Further information on how to download and process these data is available in the official repository for the book.

**Image data**

Images pose a unique set of challenges for data scientists. We’ll demonstrate the optimal methodology by covering the challenge of aerial image processing - a domain of growing importance in agriculture, biodiversity conservation, urban planning and climate change research. Our mini use-case uses data from Kaggle, collected to help the detection of swimming pools and cars. For more information on the dataset, you can use the URL in Table 4-2.

**OpenCV and scikit-image**

As we mentioned at the beginning of the chapter, downstream purpose influences data processing heavily. Since aerial data is often used to train machine learning algorithms, our focus will be on preparatory tasks.

The OpenCV package is one of the most common ways to work with image data in Python. It contains all the necessary tools for image loading, manipulation and storage. The “CV” in the name stands for Computer Vision - the field of machine learning that focuses on image data. Another handy tool that we’ll use is scikit-image. As its naming suggests, it’s very much related to scikit-learn.

Here are the steps of our task (refer to Table 4-2):

1. Resize the image to a specific size
2. Convert the image to black and white
3. Augment the data by rotating the image

For an ML algorithm to learn successfully from data, the input has to be cleaned (data munging), standardized (i.e., scaling) and filtered (feature engineering). You can imagine gathering a dataset of images (for example, by scraping data from Google Images). They will differ in some way or another - such as size and/or color. Steps 1 and 2 in our task list help us deal with that. Step 3 is handy for ML applications. The performance (i.e., classification accuracy, or Area Under the Curve(AUC)) of ML algorithms depends mostly on the amount of training data, which is often in little supply. To get around this, without resorting to obtaining more data, data scientists have discovered that playing around with the data already available, such as rotating and cropping, can introduce new data points. Those can then be used to train the model again and improve performance. This process is formally known as data augmentation.

Enough talk - let’s start by importing the data! Remember, if you want to follow along, check the complete code at the book’s repository.

```python
import cv2
single_image = cv2.imread("img_01.jpg")
plt.imshow(single_image)
plt.show()
```

Using cv2 might seem confusing since the package is named OpenCV. cv2 is used as a short-hand name. The same naming pattern is used for scikit-image, where the import statement is shortened to skimage.
So in what object type did `cv2` store the data? We can check with `type`:

```r
print(type(single_image))
```
```r
dtype
```

Here we can observe an important feature that already provides advantages to using Python for CV tasks as opposed to R. The image is directly stored as a `numpy` multidimensional array (nd stands for n-dimensions), making it accessible to a variety of other tools available in the wider Python ecosystem. Because this is built on the `pyData` stack, it’s well-supported. Is this true for R? Let’s have a look at the `magick` package:

```r
library(magick)
single_image <- image_read('img_01.jpg')
class(single_image)
```
```r
[1] "magick-image"
```

The `magick-image` class is only accessible to functions from the `magick` package, or other closely related tools, but not the powerful base R methods (such as the ones shown in Chapter 2, with the notable exception of `plot()`). Those different approaches in how various open source packages support each other is illustrated in Figure 4-2, and is a common thread throughout the examples in this chapter.
NOTE

There is at least one exception to this rule - the EBImage package, a part of Bioconductor. By using it you can get access to the image in its raw array form, and then use other tools on top of that. The drawback here is that it’s a part of a domain-specific package, and it might not be easy to see how it works in a standard CV pipeline.
Figure 4-2. The two types of package design hierarchies as they are used during a data lifecycle (bottom to top). The left pattern shows a suboptimal structure, where users are forced to adopt and use purpose-specific tools at the first level which limits their flexibility and productivity. The pattern on the right shows a better structure, where there are standard tools for the initial phases of the data lineage, enabling a variety of tools downstream.

Note that in the previous step (where we loaded the raw image in Python), we also used one of the most popular plotting tool - matplotlib (data
visualization is covered in Chapter 5), so we again took advantage of this better design pattern.

Now that we know that the image data is stored as a numpy ndarray, we can use numpy’s methods. What’s the size of the image? For this we can try the .shape method of ndarray:

```python
print(single_image.shape)
224 224 3
```

It worked indeed! The first two output values correspond to the image height and width respectively, and the third one to the number of channels in the image - three in this case ((r)ed, (g)reen and (b)lue). Now let’s continue and deliver on the first standardization step - image resizing. Here we’ll use cv2 for the first time:

```python
single_image = cv2.resize(single_image, (150, 150))
print(single_image.shape)
(150, 150, 3)
```

**NOTE**

If you gain experience working with such fundamental tools in both languages, you’ll be able to test your ideas quickly, even without knowing whether those methods exist. If the tools you use are designed well (as in the better design in Figure 4-2), often they will work as expected!

Perfect, it worked like a charm! The next step is to convert the image to black and white. For this, we’ll also use cv2:

```python
gray_image = cv2.cvtColor(single_image, cv2.COLOR_RGB2GRAY)
print(gray_image.shape)
(150, 150)
```

The colors are greenish and not grey. This default option chooses a color scheme that makes the contrast more easily discernible for a human eye than black and white. When you look at the shape of the numpy ndarray you can see that the channel number has disappeared - there is just one now. Now let’s complete our task and do a simple data augmentation step and flip the image horizontally.
Here we’re again taking advantage that the data is stored as a numpy array. We’ll use a function directly from numpy, without relying on the other CV libraries (OpenCV or scikit-image):

```python
flipped_image = np.fliplr(gray_image)
```

The results are shown on Figure 4-3.

![Figure 4-3. Plot of an image flipped by using numpy functions.](image)

We can use scikit-image for further image manipulation tasks such as rotation, and even this different package will work as expected on our data format:

```python
from skimage import transform
rotated_image = transform.rotate(single_image, angle=45)
```

The data standardization and augmentation steps we went through illustrate how the less complex package design (Figure 4-2) makes us more productive. We can drive the point home by showing a negative example for the third step, this time in R. For that, we’ll have to rely on the adimpro package:

```r
library(adimpro)
rotate.image(single_image, angle = 90, compress=NULL)
```

Whenever we load yet another package, we are decreasing the quality,
readability, and reusability of our code. This issue is primarily due to possible unknown bugs, a steeper learning curve, or a potential lack of consistent and thorough documentation for that third-party package. A quick check on the status of adimpro on CRAN reveals that the last time it was updated was in November 2019. This is why using tools such as OpenCV, which work on image data by taking advantage of the PyData stack, such as numpy is preferred.

A less complex, modular, and abstract enough package design goes a long way to make data scientists productive and happy in using their tools. They are then free to focus on actual work and not dealing with complex documentation or a multitude of abandonware packages. These considerations make Python the clear winner in importing and processing image data, but is this the case for the other formats?

**Text data**

The analysis of text data is often used interchangeably with the term Natural Language Processing (NLP). This, in turn, is a subfield of ML. Hence it’s not surprising to see that Python-based tools also dominate it. The inherently compute-intensive nature of working with text data is one good reason to why that’s the case. Another one is that dealing with larger datasets can be a more significant challenge in R then in Python (this topic is covered further in Chapter 5). And it is a Big Data problem. The amount of text data has proliferated in recent years with the rise of services on the internet and social media giants such as Twitter and Facebook. Such organizations have also invested heavily in the technology and related open-source, due to the fact that a large chunk of data available to them is in text format.

Similarly to the image data case, we’ll start by designing a standard NLP task. It should contain the most fundamental elements of an NLP pipeline. For a dataset, we selected texts from the Amazon Product Reviews Dataset (Table 4-2), and we have to prepare it for an advanced analytics use case, such as text classification, sentiment analysis, or topic modeling. The steps needed for completion are the following:

1. Tokenize the data
2. Remove stop-words

3. Tag the Parts of Speech (PoS)

We’ll also go through more advanced methods (such as word embeddings) in spaCy to demonstrate what the Python packages are capable of, and at the same time, provide a few R examples for comparison.

**NLTK and spaCy**

So what are the most common tools in Python? The most popular one is often referred to as the swiss-army knife of NLP - the Natural Language Toolkit (NLTK)\(^{15}\). It contains a good selection of tools covering the whole pipeline. It also has excellent documentation and a relatively low learning curve for its API.

---

**NLTK BOOK**

The NLTK authors have also written one of the most accessible books on working with text data - the NLTK Book, currently in version 3. It’s available to read online for free on the official website. It can serve as an excellent reference manual, so if you want to dive deeper into some of the topics we cover in this section, go ahead and have a look!

---

As a data scientist, one of the first steps in a project is to look at the raw data. Here’s one example review, along with its data type:

```python
eample_review = reviews["reviewText"].sample()
print(example_review)
print(type(example_review))
```

I just recently purchased her ''Paint The Sky With Stars'' CD and was so impressed that I bought 3 of her previously released CD's and plan to buy all her music. She is truely talented and her music is very unique with a combination of modern classical and pop with a hint of an Angelic tone. I still recommend you buy this CD. Anybody who has an appreciation for music will certainly enjoy her music.

```text
str
```

This here is important - the data is stored in a fundamental data type in Python -
str (string). Similar to the image data being stored as a multidimensional numpy array, many other tools can have access to it. For example, suppose we were to use a tool that efficiently searches and replaces parts of a string, such as flashtext. In that case, we’d be able to use it here without formatting issues, and the need to coerce the data type.

Now we can take the first step in our mini case study - tokenization. It will split the reviews into components, such as words or sentences:

```python
sentences = nltk.sent_tokenize(example_review)
print(sentences)
```

"I just recently purchased her 'Paint The Sky With Stars' CD and was so impressed that I bought 3 of her previously released CD's and plan to buy all her music."

'She is truely talented and her music is very unique with a combination of modern classical and pop with a hint of an Angelic tone."

'I still recommend you buy this CD."

'Anybody who has an appreciation for music will certainly enjoy her music."

Easy enough! For illustration purposes, would it be that hard to attempt this relatively simple task in R, with some functions from tidytext?

```r
tidy_reviews <- amazon_reviews %>%
 unnest_tokens(word, reviewText) %>%
 mutate(word = lemmatize_strings(word, dictionary = lexicon::hash_lemmas))
```

This is one of the most well-documented methods to use. One issue with this is that it relies heavily on the “tidy data” concept, and also on the pipeline chaining concept from dplyr (we covered both in Chapter 2). These concepts are specific to R, and to use tidytext successfully, you would have to learn them first, instead of directly jumping to processing your data. The second issue is the output of this procedure - a new data.frame containing the data in a processed column. While this might be what we need in the end, this skips a few intermediate steps and is several layers of abstraction higher than what we did with nltk. Lowering this abstraction and working in a more modular fashion (such as processing a single text field first) adheres to software development best
practices, such as DRY (“Do not repeat yourself”) and separation of concerns.

The second step of our small NLP data processing pipeline is removing stop words.17

```r
 tidy_reviews <- tidy_reviews %>%
 anti_join(stop_words)
```

This code suffers from the same issues, along with a new confusing function - `anti_join`. Let’s compare to the simple list comprehension (more information on this in Chapter 3) step in `nltk`:

```python
enGLISH_STOP_WORDS = set(stopwords.words("english"))
cleaned_words = [word for word in words if word not in english_stop_words]
```

`english_stop_words` is just a list, and then the only thing we do is loop through every word in another list (`words`) and remove it if it’s present in both. This is easier to understand. There’s no relying on advanced concepts or functions that are not directly related. This code is also at the right level of abstraction. Small code chunks can be used more flexibly as parts of a larger text processing pipeline function. A similar “meta” processing function in R can become bloated - slow to execute and hard to read.

While `nltk` allows for such fundamental tasks, we’ll now have a look at a more advanced package - spaCy. We’ll use this for the third and final step in our case study - Part of Speech (PoS) tagging.18

```python
import spacy

nlp = spacy.load("en_core_web_sm")

doc = nlp(example_review)
print(type(doc))

spacy.tokens.doc.Doc
```

1. Here we are loading all the advanced functionality we need through one function.
2. We take one example review and feed it to a spaCy model, resulting in the
spacy.tokens.doc.Doc type, not a str. This object can then be used for all kinds of other operations:

```python
for token in doc:
 print(token.text, token.pos_)
```

The data is already tokenized on loading. Not only that - all the PoS tags are marked already!

The data processing steps that we covered are relatively basic. How about some newer and more advanced NLP methods? We can take word embeddings for example. This is one of the more advanced text vectorization methods, where each vector represents the meaning of a word based on its context. For that, we can already use the same nlp object from the spaCy code:

```python
for token in doc:
 print(token.text, token.has_vector, token.vector_norm, token.is_oov)
```

```
for token in doc:
 print(token.text, token.has_vector, token.vector_norm, token.is_oov)
for token in doc:...
 I True 21.885008 True
 just True 22.404057 True
 recently True 23.668447 True
 purchased True 23.86188 True
 her True 21.763712 True
 ' True 18.825636 True
```

It’s a welcome surprise to see that those abilities are already built-in into one of the most popular Python NLP packages. On this level of NLP methods, we can see that there’s almost no alternative available in R (or even other languages for that matter). Many analogous solutions in R rely on wrapper code around a Python backend (which can defeat the purpose of using the R language). This pattern is often seen in the book, especially in Chapter 5. The same is also true for some other advanced methods such as transformer models.

For round two Python is again the winner. The capabilities of nltk, spaCy and other associated packages make it an excellent choice for NLP work!

**Time series data**
The time-series format is used to store any data with an associated temporal dimension. It could be as simple as shampoo sales from a local grocery store, with a timestamp, or millions of data points from a sensor network measuring humidity in an agricultural field.

**NOTE**

There are some exceptions to the domination of R for the analysis of time-series data. The recent developments in deep learning methods, in particular, Long Short Term Memory networks (LSTM) have proved to be very successful for time series prediction. As is the case for other deep learning methods (more on this in Chapter 5), this is an area better supported by Python tools.

**Base R**

There are quite a few different packages that an R user can use to analyze time-series data, including `xts`, and `zoo`, but we’ll be focusing on base R functions as a start. After this, we’ll have a look at one more modern package to illustrate more advanced functionality - Facebook’s Prophet.

Weather data is both widely available and relatively easy to interpret, so for our case study, we’ll analyze the daily minimum temperature in Australia (Table 4-2). To do a time series analysis, we need to go through the following steps:

1. Load the data into an appropriate format
2. Plot the data
3. Remove noise and seasonal effects and extract trend

Then we would be able to proceed with more advanced analysis. Imagine we have loaded the data from a `.csv` file into a `data.frame` object in R. Nothing out of the ordinary here. Still, differently from most Python packages, R requires data coercion into a specific object type. In this case, we need to transform the `data.frame` into a `ts` (which stands for time series).

```r
df_ts <- ts(ts_data_raw$Temp, start=c(1981, 01, 01),
end=c(1990, 12, 31), frequency=365)
class(df_ts)
```
So why would we prefer that to pandas? Well, even after you manage to convert the raw data into a time series `pd.DataFrame`, you’ll encounter a new concept - `DataFrame` indexing (see Figure 4-4). To be efficient in data munging, you’ll need to understand how this works first!
<table>
<thead>
<tr>
<th>Date</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-01-01</td>
<td>-6.088060</td>
<td>1.001294</td>
</tr>
<tr>
<td>2012-01-01</td>
<td>10.243678</td>
<td>1.074597</td>
</tr>
<tr>
<td>2012-01-01</td>
<td>-10.590584</td>
<td>0.987309</td>
</tr>
<tr>
<td>2012-01-01</td>
<td>11.362228</td>
<td>0.944953</td>
</tr>
<tr>
<td>2012-01-01</td>
<td>33.541257</td>
<td>1.095025</td>
</tr>
<tr>
<td>2012-01-01</td>
<td>-8.595393</td>
<td>1.035312</td>
</tr>
</tbody>
</table>
This indexing concept can be confusing, so let’s now look at what the alternative is in R and whether that’s better. With the df_ts time series object, there are already a few useful things we can do. It’s also a good starting point when you are working with more advanced time series packages in R, since the coercion of a ts object into xts or zoo, should throw no errors (this once again is an example of the good object design we covered in Figure 4-2). The first thing you can try to do is plot the object, which often yields good results in R:

```
plot(df_ts)
```

**NOTE**

Calling the `plot` function does not simply use a standard function that can plot all kinds of different objects in R (this is what you would expect). It calls a particular method that is associated with the data object (more on the difference between functions and methods is available in Chapter 2). A lot of complexity is hidden behind this simple function call!

![Figure 4-5. Plot of a time-series (ts) object in base R.](image)

The results from `plot(df_ts)` on Figure 4-5 are already useful. The dates on the x-axis are recognized, and a line plot is chosen instead of the default
points Plot. The most prevalent issue in analyzing time-series data (and most ML data for that matter) is dealing with noise. The difference between this data format and others is that there are a few different noise sources, and different patterns can be cleaned. This is achieved by a technique called decomposition, for which we have the built-in and well-named function `decompose`:

```r
decomposed_ts <- decompose(df_ts)
plot(decomposed_ts)
```

The results can be seen on Figure 4-6.

![Decomposition of additive time series](image)

*Figure 4-6. Plot of decomposed time-series in base R.*

We can see what the random noise is and also what is a seasonal and overall pattern. We achieved all this with just one function call in base R! In Python, we would need to use the `statsmodels` package to achieve the same.

**prophet**

For analyzing time-series data, we also have another exciting package example. It’s simultaneously developed for both R and Python (similar to the `lime`
explainable ML tool) - Facebook Prophet. This example can help us compare the differences in API design. Prophet is a package whose main strength lies in the flexibility for a domain user to adjust to their particular need, ease of use of the API, and focus on production readiness. These factors make it a good choice for prototyping time series work and using it in a data product. Let’s have a look; our data is stored as a pandas DataFrame in df:

```python
from fbprophet import Prophet

m = Prophet()
m.fit(df) ①

future = m.make_future_dataframe(periods=365) ②
future.tail()
```

① Here we see the same fit API pattern again, borrowed from scikit-learn.

② This step creates a new empty DataFrame that stores our predictions later.

```r
library(prophet)

m <- prophet(df)

future <- make_future_dataframe(m, periods = 365)
tail(future)
```

Both are simple enough and contain the same amount of steps - this is an excellent example of a consistent API design (more on this in Chapter 5).

**NOTE**

It’s an interesting and helpful idea to offer a consistent user experience across languages, but we do not predict it’ll be widely implemented. Few organizations possess the resources to do such work, which can be limiting since compromises have to be made in software design choices.

At this point, you can appreciate that knowing both languages would give you a significant advantage in daily work. If you were exposed only to the Python
package ecosystem, you would probably try to find similar tools for analyzing time-series and missing out on the incredible opportunities that base R and related R packages provide.

**Spatial data**

The analysis of spatial data is one of the most promising areas in modern machine learning and has a rich history. New tools have been developed in recent years, but R has had the upper hand for a long time, despite some recent Python advances. As in the previous sections, we’ll look at a practical example to see the packages in action.

**NOTE**

There are several formats of spatial data available. In this subsection, we are focusing on the analysis of raster data. For other formats there are some interesting tools available in Python, such as GeoPandas, but this is out of scope for this chapter.

Our task is to process occurrence and environmental data for *Loxodonta africana* (African elephant) make it suitable for spatial predictions. Such data processing is typical in Species Distribution Modeling (SDM), where the predictions are used to construct habitat suitability maps used for conservation. This case study is more advanced than the previous ones, and a lot of the steps hide some complexity where the packages are doing the heavy lifting. The steps are as follows:

1. Obtain environmental raster data
2. Cut the raster to fit the area of interest
3. Deal with spatial autocorrelation with sampling methods

**raster**

To solve this problem as a first step, we need to process raster data. This is, in a way, very similar to standard image data, but still different in processing steps. For this R has the excellent *raster* package available (the alternative is
Python’s `gdal` and R’s `rgdal`, which in our opinion, are trickier to use).

```r
library(raster)
cclimate_variables <- getData(name = "worldclim", var = "bio", res = 10)
```

`raster` allows us to download most of the common useful spatial environmental datasets, including the bioclimactic data\(^\text{24}\).

```r
e <- extent(xmin, xmax, ymin, ymax)
ccoords_absence <- dismo::randomPoints(climate_variables, 10000, ext = e)
cpoints_absence <- sp::SpatialPoints(coords_absence,
 proj4string =
cclimate_variables@crs)
cenv_absence <- raster::extract(climate_variables, points_absence)
```

Here we use the handy `extent` function to crop (cut) the raster data - we are only interested in a subsection of all those environmental layers surrounding the occurrence data. Here we use the longitude and latitude coordinates to draw this rectangle. As a next step, to have a classification problem, we are randomly sampling data points from the raster data (those are called “pseudo absences). You could imagine that those are the 0’s in our classification task, and the occurrences (observations) are the 1’s - the target variable. We then convert the pseudo-absences to spatial points, and finally extract the climate data for them as well. In the `SpatialPoints` function, you can also see how we specify the geographic projection system, one of the fundamental concepts when analyzing spatial data.

One of the most common issues when working in ML is correlations within the data. The fundamental assumption for a correct dataset is that the individual observations in the data are independent of each other to get accurate statistical results. This issue is always present in spatial data due to its very nature. This issue is called spatial autocorrelation. There are several packages available for sampling from the data to mitigate this risk to deal with this. One such package is `ENMeval`:

```r
library(ENMeval)
ccheck1 <- get.checkerboard1(oocc, envs, bg, aggregation.factor=5)
```
The `get.checkerboard1` function samples the data in an evenly distributed manner, similar to taking equal points from each square from a black and white chessboard. We can then take this resampled data and successfully train an ML model without worrying about spatial autocorrelation. As a final step, we can take those predictions and create the habitat suitability map, shown on (???).

```r
raster_prediction <- predict(predictors, model)
plot(raster_prediction)
```

1. Plot of a raster object prediction in R, resulting in a habitat suitability map. image::img/SDM_map.png"

When you’re working with spatial raster data, the better package design is provided by R. The fundamental tools such as `raster` provide a consistent foundation for more advanced application specific ones such as ENMeval and dismo, without the need to worry about complex transformation or error-prone type coercion.

**Final thoughts**

In this chapter we went through the different common data formats, and what are the best packages to process them so they are ready for advanced tasks. In each case study, we demonstrated a good package design and how that can make a data scientist more productive. We have seen that for more ML-focused tasks, such as CV and NLP, Python is providing the better user experience and lower learning curve. In contrast, for more time series prediction and spatial analysis, R has the upper hand. Those selection choices are shown on Figure 4-7.
Decision Tree for Data Formats

Is your data in [...] format

- images
- text
- time series
- spatial
What the best tools have in common is the better package design (Figure 4-2). You should always use the optimal tool for the job and pay attention to the complexity, documentation, and performance of the tools you use!

1 For a more thorough explanation on this have a look here: https://realpython.com/python-encodings-guide/.

2 This is commonly referred to as “data lineage”.

3 Who else didn’t learn what if __name__ == "__main__" does in Python?

4 One table from the data, stored in a single file.

5 Not to forget tidyr, which was discussed in Chapter 2

6 We did mention that statisticians are very literal, right?

7 This consistency is a common thread in the chapters in Part III and is addressed additionally in Chapter 5.

8 Remember - garbage in, garbage out.

9 Using code to go through the content of a web page, download and store it in a machine-readable format.

10 Which can be expensive, or even impossible in some cases.

11 If you want to learn more on data augmentation of images have a look at this tutorial.

12 At the time of writing.

13 Not to be confused with the conference of the same name, the PyData stack refers to NumPy, SciPy, Pandas, IPython and matplotlib.

14 The R community has also rallied to the call and improved the tooling in recent times, but it still arguably lags behind its Python counterparts.

15 To learn more about NLTK have a look at the official book available here.

16 Data type coercion is the conversion of one data type to another.

17 This is a common step in NLP. Some examples of stop words are “the”, “a” and “this”. These need to be removed since they rarely offer useful information for ML algorithms.

18 The process of labeling words in with the PoS they belong to.

19 Converting text into numbers for ingestion by a ML algorithm.

20 Such as trying to create custom embeddings. Check the RStudio blog here for more information.

21 You can read more about that here.

22 Location-tagged observations of the animal in the wild.
Data representing cells, where the cell value represents some information.

Environmental features that have been determined by ecologists to be highly predictive of species distributions, i.e. humidity and temperature.
A common source of frustration for data scientists is discussing their work with colleagues from adjacent fields. Let’s take the example of someone who has been working primarily in developing machine learning (ML) models, having a chat about their work with a colleague from the Business Intelligence (BI) team, more focused on reporting. More often than not, such a discussion can make both parties uncomfortable due to a perceived lack of knowledge about each other’s work domain (and associated workflows) - despite sharing the same job title. The ML person might wonder, what D3.js is, the grammar of graphics, and all that? On the other hand, the BI data scientist might feel insecure about not knowing how to build a deployable API. The feelings that might arise from such a situation have been termed “impostor syndrome,” where doubts about your competency arise. Such a situation is a by-product of the sheer volume of possible applications of data science. A single person is rarely familiar to the same extent with more than several sub-fields. Flexibility is still often required in this fast-evolving field.

This complexity sets the foundation for the workflow focus in this chapter. We’ll cover the primary data science workflows and how the languages’ different ecosystems support them. Much like Chapter 4, at the end of this chapter, you’ll have everything needed for making educated decisions regarding your workflows.

Defining workflows
Let’s take a step back, and define a workflow:

* A workflow is a complete collection of tools and frameworks to perform all tasks required from a specific job function.

For this example, let’s say you’re an ML engineer. Your daily tasks might include tools to obtain data, process it, train a model on it, and deployment frameworks. Those, collectively, represent the ML engineer workflow. An overview of the data workflows for this and other titles and their supporting tools, is presented in Table 5-1.

**Table 5-1. Common data science workflows and their enabling tools.**

<table>
<thead>
<tr>
<th>Method</th>
<th>Python package</th>
<th>R package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Munging</td>
<td>pandas</td>
<td>dplyr</td>
</tr>
<tr>
<td>EDA</td>
<td>matplotlib, seaborn, pandas</td>
<td>ggplot2, base-r, leaflet</td>
</tr>
<tr>
<td>Machine Learning</td>
<td>scikit-learn</td>
<td>mlr, tidymodels, caret</td>
</tr>
<tr>
<td>Deep Learning</td>
<td>keras, tensorflow, pytorch</td>
<td>keras, tensorflow, torch</td>
</tr>
<tr>
<td>Data Engineering</td>
<td>flask, bentoML, fastapi</td>
<td>plumber</td>
</tr>
<tr>
<td>Reporting</td>
<td>jupyter, streamlit</td>
<td>rmarkdown, shiny</td>
</tr>
</tbody>
</table>

a Data munging (or wrangling) is such a fundamental topic in data science that it was already covered in Chapter 2.

b There is much more to data engineering than model deployment, but we decided to focus on this subset to illustrate Python’s ability.

We omitted some areas in the hope that the listed ones are the most common and critical. Those selected workflows are related to each other, as presented on Figure 5-1. This diagram borrows heavily from the CRISP-DM framework, which shows all significant steps in a typical data science project. Each of the diagram’s steps has a separate workflow associated with it, generally assigned to an individual or a team.
Data Meta-workflow

EDA

Data munging

Modeling
- Statistics
- Deep learning
- ML

Deployment

Reporting
Now that we have defined a workflow, what are the defining properties of a “good” one? We can compile a checklist with three main factors to consider:

1. It’s well established. It’s widely adopted by the community (also across different application domains, such as Computer Vision or Natural Language Processing).

2. It’s supported by a well-maintained, open-source ecosystem and community. A workflow that relies heavily on closed-source and commercial applications (such as Matlab) is not considered acceptable.

3. It’s suitable for overlapping job functions. The best workflows are similar to lego bricks - their modular design and extensibility can support diverse tech stacks.

With the big picture and definitions out of the way, let’s dive deeper into the different workflows and how they are supported by R and Python!

Exploratory data analysis

Looking at numbers is hard. Looking at rows of data containing millions upon millions of them is even more challenging. Any person dealing with data faces this challenge daily. This need has led to considerable developments in data visualization (DV) tools. A recent trend in the area is the explosion of self-serving analytics tools, such as Tableau, Alteryx, and Microsoft PowerBI. These are very useful, but the open-source world has many alternatives available, often rivaling or even exceeding their commercial counterparts’ capabilities (except, in some cases, ease of use). Such tools collectively represent the EDA workflow.

WHEN TO USE A GUI FOR EDA

Many data scientists frown at the notion of using a graphical user interface (GUI) for their daily work. They would much rather prefer the flexibility and utility of command-line tools instead. Nevertheless, one area where using a GUI makes more sense (for productivity reasons) is EDA. It can be quite time-consuming to generate multiple plots, especially at the beginning of a data science project. Usually, one would need to create tens, if not hundreds of them. Imagine writing the code for each one (even if you improve your code’s organization by
refactoring into functions). For some larger datasets, it’s sometimes much easier to use some GUI, such as AWS Quicksight or Google Data Studio. By using a GUI the data scientist can quickly generate a lot of plots first and only then write the code for the ones that make the cut after screening. There are a few good open-source GUI tools, for example Orange.

EDA is a fundamental step at the beginning of the analysis of any data source. It is typically performed directly after data loading, at the stage where there’s a significant need for business understanding. This explains why it’s an essential step. You are probably familiar with the garbage in, garbage out paradigm - the quality of any data project depends on the quality of the input data and the domain knowledge behind it. EDA enables the success of the downstream workflows (such as ML), ensuring both the data and the assumptions behind it are correct and of sufficient quality.

In EDA, R has far better tools available than Python. As we discussed in Chapter 1 and Chapter 2, R is a language made by statisticians and for statisticians (remember FUBU from Chapter 2?), and data visualization (plotting) has been of great importance in statistics for decades. Python has made some forward strides in recent years but is still seen as lagging (you need just to look at example matplotlib plot to realize this fact). Enough praise for R; let’s have a look at why it’s great for EDA!

**Static visualizations**

You should already be acquainted with base R’s powers in terms of DV from Chapter 4, especially regarding time series plotting. Here we’ll take a step further and discuss one of the most famous R packages - ggplot2. It’s one of the main reasons why Pythonistas want to switch to R. What makes ggplot2 so successful in EDA work is that it’s based on a well thought-through methodology - the Grammar of Graphics (GoG). It was developed by L. Wilkinson, and the package by Hadley Wickham.

What is the GoG? The original paper behind it has the title “A layered grammar of graphics,” and the word “layered” holds the key. Everything you see on a plot contributes to a larger stack or system. For example, the axes and grids form a separate layer compared to the lines, bars, and points. Those latter elements constitute the “data” layer. The complete stack of layers forms the result - a
complete ggplot. Such a modular design pattern allows for great flexibility and provides a new way of thinking about data visualization. The logic behind GoG is illustrated in Figure 5-2.
Grammar of Graphics

layers

$X_1$

labels
data points

grid system
To illustrate the different procedures for a regular EDA workflow we’ll use the `starwars` dataset (available from the `dplyr` package). This dataset contains information on characters in the Star Wars movies, such as their gender, height and species. Let’s have a look!

```r
library(ggplot2)
library(dplyr)
data("starwars")
```

This will make the dataset visible in your RStudio environment, but it’s not strictly necessary.

As a first step, let’s do a basic plot:

```r
ggplot(starwars, aes(hair_color)) + geom_bar()
```

This plots the counts of the hair color variable. Here, we see a familiar operator, `+`, used unconventionally. We use `+` in `ggplot2` to add layers on top of each other in `ggplot2`. Let’s build on this with a more involved case. Note that we omitted a filtering step from the code here (there’s an outlier - Jabba the Hut):

```r
ggplot(starwars, aes(x = height, y = mass, fill = gender)) + geom_point(shape = 21, size = 5) + theme_light() + geom_smooth(method = "lm") + labs(x = "Height (cm)", y = "Weight (cm)", title = "StarWars profiles ", subtitle = "Mass vs Height Comparison", caption = "Source: The Star Wars API")
```

1. Specify which data and features to use.
2. Select a points plot (the most suitable for continuous data).
3. Use a built-in `theme` - a collection of specific layer styles.
4. Fit a linear model and show the results as a layer on the plot.
5. Add title and axes labels.
The results of this plotting operation are shown on Figure 5-3. With just several lines of code, we created a beautiful plot, which can be extended even further.

Figure 5-3. An advanced ggplot2 plot.

Now that we covered static visualizations let’s see how to make them more
interesting by adding interactivity!

**Interactive visualizations**

Interactivity can be a great aid to exploratory plots. Two excellent R packages stand out: `leaflet` and `plotly`.

---

**BEWARE OF JAVASCRIPT**

Interactivity in Python and R is often based on an underlying JavaScript codebase. Packages like `leaflet` and `plotly` take care of this for us, but keen to learn pure JavaScript. Low-level packages for interactive graphics, like D3.js, can be overwhelming to learn for the novice. Thus, we’d encourage learning a high-level framework, such as Dimple.js instead.

---

Different datasets require different visualization methods. We covered the case of a standard tabular dataset (starwars), but how about something different? We’ll have a go at visualizing data with a spatial dimension and use it to show R’s excellent capabilities in producing interactive plots. For this, we selected the Shared Cars Locations dataset. It provides the locations of car-sharing vehicles in Tel-Aviv, Israel. Can we show those on a map?

```r
library(leaflet)
leaflet(data = shared_cars_data[1:20,]) %>%
 addTiles()%>%
 addMarkers(lng = longitude, lat = latitude)
```

In this case, we subset the data using the first 20 rows only (to make the visualization less cluttered). The `addTiles` function provides the map background, with the street and city names. The next step is to add the markers which specify the car locations by using `addMarkers`. The result of this relatively simple operation is shown in Figure 5-4.
As with the best data science tools, packages like **leaflet** hide a lot of complexity under the hood. They do much of the heavy lifting necessary for advanced visualization and enable the data scientist to do what they do best - focus on the data. There are many more advanced features available in **leaflet**, and we encourage the motivated user to explore them.

**MAKE GGPLOT2 INTERACTIVE**

As our book’s subtitle suggests, we are always attempting to take the best of both worlds. So one easy way to do it is to use the `ggplotly` command from the `plotly` package and pass it a `ggplot2` plot. This will make the plot interactive!

Hopefully, this section has made clear why the EDA workflow makes using R and tools such as **ggplot2** and **leaflet** the best options. We’ve just scratched the surface on what’s possible, and if one decides to go deeper into the data visualization aspects, there are a ton of great resources available.

**Machine learning**

Nowadays, data science is used almost synonymously with machine learning
(ML). While there are many different workflows necessary for a data science project (Figure 5-1), ML often steals the focus of aspiring data scientists. This is partly due to an increasing growth surge in recent years due to the availability of large amounts of data, better computing resources (such as better CPUs and GPUs), and the need for predictions and automation in modern business. In the early days of the field, it was known under a different name - statistical learning. As previously mentioned, statistics has been historically the primary domain of R. Thus there were good tools available early on for doing ML in it. However, this has changed in recent years, and Python’s tools have mostly overtaken its statistical competitor.

One can trace Python’s ML ecosystem’s success to one specific package - scikit-learn. Since its early versions, the core development team has focused on designing an accessible and easy-to-use API. They supported this with some of the most complete and accessible documentation available in the open-source world. It’s not only a reference documentation but contains excellent tutorials on various specific modern ML applications, such as working with text data. scikit-learn provides access to almost all common ML algorithms out of the box.

Let’s have a look at some proof of why scikit-learn is so great for ML. First, we can demonstrate the model imports:

```python
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LinearRegression
```

Here we can already see how consistently those models are designed - similar to books in a well-organized library; everything is at the right place. ML algorithms in scikit-learn are grouped based on their similarities. In this example, tree-based methods such as Decision Tree belong to the tree module. In contrast, linear algorithms can be found in the linear_model one (i.e., if you want to perform a Lasso model, you can predictably find it in linear_model.Lasso). Such hierarchical design makes it easier to focus on writing code and not to search for documentation since any good autocomplete engine will find the relevant model for you.
NOTE
We discussed modules in Chapter 3, but it’s a concept that bears repeating since it might be confusing for some R users. Modules in Python are nothing more than collections of organized scripts (based on some similarities, such as "data_processing" for example), which allows them to be imported into your applications, improving readability and making the codebase more organized.

Next, we need to prepare the data for modeling. An essential element of any ML project is splitting the data into train and test sets. While newer R packages such as mlr improve on this as well, scikit-learn has better (in terms of both consistency and syntax) functions available:

```python
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
 test_size=0.33,
 random_state=42)
```

Suppose we have been consistent in the steps before and have followed traditional ML convention. In that case, we have the X object to store our features and y' - the labels (in the case of a supervised learning problemfootnote:[For those readers new to ML, supervised learning is concerned with prediction tasks where a target is available (label), as compared to unsupervised learning where it's missing, and the prediction task is on uncovering groups in the data.]). In this case, the data will be randomly split. The official way to do this in R's `mlr` is:

```r
train_set = sample(task$nrow, 0.8 * task$nrow)
test_set = setdiff(seq_len(task$nrow), train_set)
```

This can be harder to understand, and if one needs documentation on how to perform a more advanced split, such as by stratification, there’s little available, and another package might be required, increasing the learning curve and cognitive load on the data scientist. scikit-learn, on the other hand, provides a handy function in StratifiedShuffleSplit. The capabilities
only increase further when we start to perform the actual modeling:

```python
model = RandomForestClassifier()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
```

These three code lines are all we need to initialize the model with default parameters, fit (train) it on the training dataset, and predict on the test one. This pattern is consistent across projects (except for the model initialization, where one selects their algorithm of choice and its parameters - those do differ, of course). A visual comparison between several different packages (from other developers and purposes) is shown in Figure 5-6. Finally, let’s compute some performance metrics; many of them are handily available:

```python
from sklearn import metrics
acc = metrics.accuracy_score(predictions, y_test)
conf_matrix = metrics.confusion_matrix(predictions, y_test)
classif_report = metrics.classification_report(predictions, y_test)
```

The `metrics` module contains everything needed to check our model’s performance, with a simple and predictable Application Programming Interface (API). The pattern of `fit` and `predict` we saw earlier has been so influential in the open-source world that it has been widely adopted by other packages, such as `yellowbrick` (a package for model performance visualization):

```python
from yellowbrick.regressor import ResidualsPlot

visualizer = ResidualsPlot(regr)
visualizer.fit(X_train, y_train)
visualizer.score(X_test, y_test)
visualizer.show()
```

There are many other visualizations available in `yellowbrick`, all obtained with a similar procedure. Some are presented in Figure 5-5.
The consistency and ease of use are among the significant reasons users want to use Python for ML. It enables the user to focus on the task at hand and not on writing code and sifting through tedious documentation pages. There were changes in R packages in recent years aiming at reducing those deficiencies. Such packages most notably include mlr and tidymodels. Still, they are not widely used, but perhaps this pattern can change in the future. There is an additional factor to consider here, which is similar to the ecosystem interoperability we saw in Chapter 4. scikit-learn works very well with other tools Python, which are necessary for the development and deployment of ML models. Such tools include database connections, high-performance computing packages, testing frameworks, and deployment frameworks. Writing the ML code in scikit-learn will enable the data scientists to be a more productive part of a data team (just imagine the expression of your data
engineering colleagues’ faces when you deliver an MLR model to them for deployment).

DEEP LEARNING

We won’t cover deep learning (DL) extensively in this section since most of the rationale from scikit-learn (and Python in general) applies to it as well. Still, due to its increasing importance in modern data science, it deserves a few additional comments.

The DL workflow has been mostly supported by two competing open-source frameworks - TensorFlow (from Google) and PyTorch (Facebook). There is an additional framework, which was eventually included in TensorFlow,
It provides a higher level of abstraction API to the TensorFlow functions, lowering the learning curve. There have been two notable developments in the R ecosystem regarding those DL frameworks. TensorFlow and Keras have been ported by using the reticulate package (we’ll cover it in Chapter 6), which calls Python under the hood. Pytorch on the other hand has been faithfully recreated on top of libtorch, the C++ backend of Pytorch in the torch package.

Due to those points, our recommendation is to use the Python tools for a DL workflow, based on Keras and TensorFlow, except using torch, in the case you have an existing R codebase.

To wrap up this section, we can summarize the main points about the ML workflow and why Python tools better support it:

1. Focus has moved to real-time predictions and automation.
2. The Python ML workflow provides a more consistent and easy-to-use API.
3. Python is more of a glue language, ideal for combining different software components (i.e., frontend/backend and databases).

In the next section, we’ll go deeper into the third part of this list and demonstrate the recommended Data Engineering workflow.

**Data engineering**

Despite the ML tools’ advancements in recent years, the completion rate of such projects in companies remains low. One reason which is often credited for this is the lack of data engineering (DE) support. To apply ML and advanced analytics, companies need the infrastructural foundation provided by data engineers, including databases, data processing pipelines, testing, and deployment tools. Of course, this forms a separate job title - data engineer. Still, data scientists need to interface (and sometimes implement themselves) with those technologies to ensure data science projects are completed successfully.

While DE is a massive field, we’ll focus on a subset for this section. We selected
model deployment for this since it’s the most common DE workflow that a data scientist might need to participate in. So what is ML deployment? Most of the time, this means creating an application programming interface (API) and making it available to other applications, either internally or externally (to customers, this is called “exposing” an API, to be “consumed”). Commonly ML models are deployed via a REST interface.\(^9\)

ML model deployment, compared to the other topics in this chapter, requires interfacing with many different technologies, not directly related to data science. These include web frameworks, CSS, HTML, JavaScript, cloud servers, load balancers, and others. Thus it’s not surprising that Python tools dominate here\(^{10}\) - as we covered before, it’s a fantastic glue language.

**NOTE**

The model deployment workflow requires code to be executed on other machines rather than the local one where the data scientist performs their daily work. This hits “it works on my machine” problem right on the head. There are different ways to deal with managing different environments consistently, ranging from simple to complex. A simple way to do this is to use a requirements.txt file, where all dependencies are specified. A more complex option, which is often used in large-scale, critical deployments, uses container solutions such as Docker. This dependency management is much easier to achieve in Python than in R.

One of the most popular tools to create an API is Python’s Flask - a micro-framework. It provides a minimalistic interface that is easy to extend with other tools, such as ones providing user authentication or better design. To get started, we’ll go through a small example. We would need a typical Python installation with some other additional configurations such as a virtual environment\(^{11}\) and a GUI to query the API. Let’s get started!

**ML-FOCUSED API FRAMEWORKS**

Recently competitors to Flask have sprung up. They serve the same purpose but with an increased focus on ML. Two popular examples include BentoML and FastAPI. Those frameworks provide you with some additional options that make ML deployment easier. Remember that Flask was initially built for web development APIs, and the needs of an ML project can be different.
We’ll be building an API that predicts housing prices. It’s always prudent to start with the end goal in mind and how we’d like such a predictive model to be used by an external application or an end-user. In this case, we can imagine our API to be integrated into an online house rental portal.

For brevity, we’ll omit the model training part. Imagine that you have followed a traditional scikit-learn model development. The results of the predictive model are stored in a .pkl (Pickle object, the standard Python way to store objects on disk). This process is called serialization, and we need to do it to use the model in the API later:

```python
import pickle

model preparation and training part
...

model serialization
outfile = open("models/regr.pkl", "wb")
pickle.dump(regr, outfile)
outfile.close()

print("Model trained & stored!")
```

We can save this code in a script called train_model.py. By running it: python train_model.py, the pickled model will be produced and saved. Figure 5-7 provides an overview of how the different components fit.
Let's use Flask next:

```python
import pickle
import numpy as np
from ast import literal_eval
from flask import Flask, request, jsonify

app = Flask(__name__)

infile = open("models/regr.pkl", "rb")
regr = pickle.load(infile)
infile.close()
```

*Figure 5-7. Example architecture for an ML API.*
@app.route('/')
def predict(methods=["GET"]):
    payload = request.json['data']
    input_data = np.array(literal_eval(payload)).reshape(1, -1)
    prediction = regr.predict(input_data)

    return jsonify(
        "prediction": round(float(prediction), 3)
    )

if __name__ == '__main__':
    app.run(debug=True)

1. We use this function to specify that the payload string object is actually a dictionary.
2. Here we create an object that holds the app.
3. In those several lines we load the serialized model.
4. This Python decorator creates an “end-point” (see info box below).
5. At this step, the serialised model is used for inference.
6. The inference results are returned in a JSON format.

This code is added to a file app.py. Once you execute this script, the command line will output a local URL. We can then use a tool such as Postman to query it. Have a look at Figure 5-8 to see how such a query works. Voilà - we built an ML API!

NOTE

In our example, the API provides just one functionality - the ability to predict a housing price on a dataset. Often in the real world, the same application might need to do different things. This is organized by creating different end-points. For example, there might be an end-point for triggering a data preparation script and a separate inference one.
POST http://127.0.0.1:5000/uploader

GET http://127.0.0.1:5000/

```
1
2 "data": "[0, 3, 2, 4, 5, 6, 18, 2, 5, 33, 555, 23, 331]"
3
```

```
1
2 "prediction": 17.617
3
```
Due to the “glue-like” nature of Python packages, they dominate the DE workflow. If a data scientist can write such applications on their own in Python, the success of the complete data project is ensured.

**Reporting**

Every data scientist is aware (perhaps painfully so) of how vital communication is for their daily work. It’s also an often underrated skill, so this mantra bears repeating. So, what is more important than one of the essential deliverables of a data science project - reporting your results?

There are different reporting methods available. The most typical use case for a data scientist is to create a document, or a slide deck, containing the results of the analysis they have performed on a dataset. This is usually a collection of visualizations with an associated text and a consistent storyline (i.e., going through the different stages of a project lifecycle - data importing, cleaning, and visualization). There are other situations where the report has to be referred to often and updated in real-time - called dashboards. And finally, some reports allow the end-user to explore them more interactively. We’ll go through those three report types in the following subsections.

**Static reporting**

The popularization of the markdown (MD) language helps data scientists focus
on writing code and associated thoughts instead of the tool itself. A flavor of this language - R Markdown (RMD) is widely used in the R community. This allows for the concept of “literate programming”, where the code is mixed with the analysis. The RStudio IDE provides even further functionality with tools such as R notebooks. This is how easy writing an RMD report is:

```
Analysing Star Wars

First we start by importing the data.
```

```
```{r}
library(dplyr)
data(starwars)
```

Then we can have a look at the result.

This .rmd file can then be knit (compiled) into a .pdf or an .html (best for interactive plots), creating a beautiful report. There are additional templates to create even slides, dashboards and websites from RMD files. Have a look at Figure 5-9 to check it out in action.

title: "Example Markdown"
output: html_document

```r
# Setup
forCode:FALSE
```

```r
writespecificalertecho: TRUE
```

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see <http://rmarkdown.rstudio.com>.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```r
r(cars)
summary(cars)
```

Including Plots

You can also embed plots, for example:

```r
pressure <- c(0, 100, 200, 300, 400)
```

Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of the R code that generated the plot.

including plots
tutorial
R Markdown
```r
plot(pressure)
```

Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of the R code that generated the plot.

```r
# Summary
#
#   Min.  : 4.00  
#   1st Qu.:12.00 
#   Median :25.00 
#   Mean  :25.40  
#   3rd Qu.:36.00 
#   Max.  :56.00 
```

Including Plots

You can also embed plots, for example:

```r
plot(pressure)
```
As with everything in the open-source world, data scientists worldwide have contributed to the further development of RMD. There are many templates available for RMD, enabling users to create everything from a custom-styled report to a dynamically generated blogging website.

NOTE

The widely adopted alternative to RMD in the Python world is the Jupyter Notebook (along with its newer version - Jupyter Lab). The “r” in Jupyter stands for R, and it is certainly possible to use that, but we argue that the RMD notebooks in RStudio provide a better interface, at least for R work.

Interactive reporting

What if we want to be able to let the recipients of our report do some work as well? If we allow for some interactivity, our end-users would answer questions for themselves without relying on us to go back, change the code and regenerate the graphs. There are several tools available, but most of them pale in comparison to the ease of use and capabilities of R’s shiny package.

Using this package requires a bit of a different way of writing R code, but you will create fantastic applications once you get used to it. Let’s go through a basic yet practical example. Shiny apps consist of two fundamental elements: the user interface (UI) and the server logic. Those are often even separated into two files. For simplicity we’ll use the single file layout and use two functions for the app.

```r
library(shiny)

ui <- fluidPage(  
  titlePanel("StarWars Characters"),
  sidebarLayout(  
    sidebarPanel(  
      numericInput("height", "Minimum Height:", 0, min = 1, max = 1000),  
      numericInput("weight", "Minimum Weight:", 0, min = 1, max = 1000)
    )
  )
)```
hr()
helpText("Data from `dplyr` package.")

mainPanel(
  plotOutput("distPlot")
)
)

1. This function specifies that we want to have a “fluid” layout - that makes the app “responsive” - easy to read on a variety of devices, such as smartphones.
2. Add the dynamic input for the user.
3. Add a dedicated area for the output.

The `ui` object contains all the “frontend” parts of the application. The actual computation happens in the following function; we’ll be adding the `ggplot` from the DV section:

```r
server <- function(input, output) {

 output$distPlot <- renderPlot({
 starwars_filtered <- starwars %>%
 filter(height > input$height & mass > input$weight)
 ggplot(starwars_filtered, aes(x = height, y = mass, fill =
 gender)) +
 geom_point(pch = 21, size = 5) +
 theme_light() +
 geom_smooth(method = "lm") +
 labs(x = "Height", y = "Mass",
 title = "StarWars Characters Mass vs Height Comparison",
 subtitle = "Each dot represents a separate character",
 caption = "Data Source: starwars (dplyr)"
 })
}
```

1. The server needs two things: input and output.
2. There is just one output in our case.
3. We can add all kinds of R computations here, as in a regular R script.
4. The most recent item (in this case, a plot) is returned for display in the frontend.
The computation happens in this function. In the end, we need to pass those two functions here to start the app. The results of this are shown on Figure 5-10.

```r
shinyApp(ui = ui, server = server)
```

**StarWars Characters**

<table>
<thead>
<tr>
<th>Minimum Height:</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Weight:</td>
<td>60</td>
</tr>
</tbody>
</table>

Data from `dplyr` package.

![StarWars Characters Mass vs Height Comparison](image)

*Figure 5-10. An interactive report with Shiny.*

One difference for our Shiny app that might make it tricky to use than our markdown files is that you would need to host the application on a remote machine. For a normal `.rmd` on the files, you need to knit the file into a PDF and then share it. How such applications are deployed is beyond this book’s scope.

Creating reports is a small but vital component of data science work. This is how your work is shown to the outside world, be it your manager or another department. Even if you have done a great job in your analysis, it will often be judged by how well you communicate the process and results. Tools of literate
programming such as RMD and more advanced interactive reports in shiny can go a long way to creating a state of the art reports. In the final chapter of this book, Chapter 7, we’ll provide a great example of this in action.

**Final thoughts**

In this chapter, we went through the most essential workflows in a data science project and discovered the best tools in R and Python. In terms of EDA and reporting, R can be crowned the king. Packages such as **ggplot2** are peerless in the data science community, and **shiny** can allow for fascinating new ways to present data science results to stakeholders and colleagues. In the ML and DE worlds, Python’s glue-like nature provides fantastic options, enabling modern data scientists to focus on the work rather than the tools.

---

1. It’s a bit unfair to present *matplotlib* as the only viable alternative from Python. The *seaborn* package also enables the creation of beautiful plots quickly but still lags behind the *ggplot* features. It’s worth mentioning that newer versions of *pandas* have plotting capabilities as well, so we should watch this space.

2. There have been attempts to recreate this package in Python, such as *ggplot* but they have not caught on in the community so far.

3. He wrote many other packages, and in some ways almost single-handedly changed the way people use R in a modern context. Have a look at [Chapter 2](#) for more information on his packages.

4. More information on the dataset is available [here](#).

5. Did you know that his real name is Jabba Desilijic Tiure?

6. Explore the official documentation [here](#) for different map styles.

7. An overview of those is available [here](#).

8. For a visual appreciation of the complexity of ML architectures, have a look at this [MLOps document](#) from Google.

9. To learn more about what is REST, have a look at this [resource](#).

10. The R alternative to Flask is *plumber*. The RStudio IDE provides a friendly interface to use this tool, but still, it is lagging in options and adoption in the ML community.

11. For brevity, we will not go deeper into setting up virtual environments here. We urge the dedicated reader to read up upon the *virtualenv* and *renv* tools, covered in [Chapter 3](#).

12. The dataset is “Boston Housing”, available [here](#).

13. If you are more of a command-line person, have a look at *curl*. 
There’s an advanced new tool in Python, called *streamlit*, but it is yet to gain in popularity and adoption.

To get inspired with what’s possible in Shiny, look at the gallery of use cases at the [RStudio website](https://www.rstudio.com).
Part IV. Bilingualism III: Becoming synergistic

So far in this book we have been exploring the two languages in quite isolated cases. We learned how to learn one from the other, and in which data formats and workflows they excel. In all of those cases the separation has been quite distinct - for some tasks R excels, and in others its general purpose counterpart Python.

Chapter 6

In this chapter we’ll take a different perspective - one that can be heralding a new way to work with programming languages in the future.

Chapter 7

As a final chapter of the book it is fitting to apply all the concepts we have learned so far. We’ll do this by going through a real world case study of bilingual data science.
Interoperability, the ability for different programming languages to work together, is a cornerstone of computing. Ideally objects can be shared directly between the two languages. As you can imagine, this can be problematic for a variety of reasons, like memory usage and incompatible data storage structures to name just two. Although there have been several attempts to implement this smoothly between Python and R, it’s only been in the past couple of years that a reasonably functional kit had come to fruition. I’ll discuss this in “Interoperability”. But it’s useful to first return to the basics. This will not only give context to appreciate smooth interoperability later on, but you a basic solution may already meet your needs. Nonetheless, if you want to get started with interoperability, you can skip the next section.

**Faux-operability**

The most basic type of interoperability, which we’ll call cross-talk, is more of a faux-operability. Here, we execute pre-defined scripts across languages, passing information between them using files as intermediaries. Imagine the following situation, which I’ve diagramed in Figure 6-1.
Processing in R

file_1.R

Data Export from R

Call Python script from within R

Processing in Python

pg.csv

Data Import

file_2.py

Data Export from Py

Output from a combined R & Python workflow

pg_small.csv
In R, after performing some necessary work on an object, e.g. `PlantGrowth`, we execute:

```r
(Previous interesting and complicated steps omitted)

Write a data.frame of interest to a file ...
rio::export(PlantGrowth, "pg.csv")

... which is then processed by a Python script
system("~/.venv/bin/python3 myScript_2.py < "pg.csv")
```

The `system()` function executes a system command, provided as a character argument. The command is made up of four parts.

First, `~/.venv/bin/python3` is the location of the Python executable within our virtual environment, assuming that you’ve created one. We could have also included this in the scripts `shebang` first line as `#!/.venv/bin/env python3`. This ensures that the script is executed in the environment in which it was created. See “Virtual environments” if this sounds strange to you.

Second, `myScript_2.py` is the name of the Python file that contains the commands we want to execute.

Third, `<` allow us to redirect `stdin` from the rhs to the file on the lhs.\(^1\)

Fourth, "pg.csv" is the `stdin`. You may recall that there are three standard `channels`, or `streams`, for command line functions. `stdin` for the `standard input`, `stdout` for the `standard output` and `stderr` for the `standard error`. Here, `stdin` is hardcoded. It’s a character string which corresponds to a file: "pg.csv", which was exported in the previous command. Hard-coding should be avoided for the most part and we’re sure you can imagine many ways to make this dynamic. That’s not really our focus here; the point is to feed some input into a Python script.

Thus, we’re executing a Python script that takes `stdin` from within an R script, and that `stdin` in itself a product of the R script. Let’s take a look at the minimal components of this Python script.
import sys
import pandas as pd

# import the file specified by the standard input
myFile = pd.read_csv(sys.stdin)

# (Fantastically complex and very Pythonic code omitted)

# Write the first four lines to a file
myFile.head(4).to_csv("pg_small.csv")

First we need the `sys` module to handle `stdin` (`sys.stdin`). We import the file, represented by `sys.stdin` using pandas and after our Python script works it’s magic we export some other output using the `to_csv()` method.

There are a lot of things wrong with this method, and we’ll get to them soon. But the point is that it works, and sometimes, it’s exactly what you need. Working in a research laboratory I often had to provide results to colleagues quickly. I mean this literally, since very expensive cell cultures would die and a week’s worth of work would be wasted if the results were not ready. Pre-processing of proprietary raw data and access to a secure server prohibited my colleagues from executing automated R scripts. My solution was to first process the machine-generated proprietary data with software specialized for the task. Then I was able to use a Mac OS Automator service to execute a Perl script on that output, which was now my `stdin`. This Perl script then called an R script that produced a file of a plot with all the relevant information clearly displayed in the title. It wasn’t the most open or elegant solution, but it worked and I got my plots with one mouse click in about half a second without any extra web-sites or logins. Life was good, so what’s the problem?

Well, there are several problems. Let’s consider three.

First, in retrospect, I could have probably executed the entire workflow in R (excluding the proprietary pre-processing). It’s necessary to consider simplifying a workflow and having a good reason to use multiple languages. Deciding when and why to combine Python & R has come up throughout this book.

Second, there are a lot of moving parts. We have several files and we’re even producing additional intermediate ones. This increases the chance for error and confusion. That’s not terrible, but we better take care to keep things organized.
Third, in many cases, this workflow works well when we can export an R data.frame as a csv file, which pandas can easily import. For more complex data structures, you can export 1 or more R objects as an RData or Rds format file. The python pyreadr package provides functions to import these files and provide access to each object stored in a dict.

Cross-talk is great, but true interoperability smooths out the wrinkles in this process quite nicely. There are two widely-used frameworks, the choice of which to use will depend on which language is your starting point.

**Interoperability**

If you’re primarily using R and want access to Python, then the R package reticulate is the way to go. Conversely, if you’re primarily using Python and want access to R, then the Python module rpy2 is the tool for you. We can summarize this in Table 6-1 and Table 6-2. In each table, read each line as a sentence beginning with the column headers.

**Table 6-1. Interoperability granted by reticulate.**

<table>
<thead>
<tr>
<th>Access</th>
<th>Using command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python Functions</td>
<td>in R, pd &lt;- library(pandas); pd$read_csv()</td>
</tr>
<tr>
<td>Python Objects</td>
<td>in R, py$objName</td>
</tr>
<tr>
<td>R Objects</td>
<td>in Python, r$objName in Python</td>
</tr>
</tbody>
</table>

**Table 6-2. Interoperability granted by rpy2 when writing in Python.**

<table>
<thead>
<tr>
<th>Access</th>
<th>Using command</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Functions</td>
<td>in Python, import rpy2.objects.lib.ggplot2 as ggplot2</td>
</tr>
<tr>
<td>R Packages</td>
<td>in Python, r_cluster = importr('cluster')</td>
</tr>
<tr>
<td>R Objects</td>
<td>in Python, foo_py = objects.r['foo_r']</td>
</tr>
</tbody>
</table>

The commands in Table 6-1 and Table 6-2 reveal how to access all variety of
objects from one language directly from the other. In addition, we can also
directly call functions. This is a real milestone since it relieves us of having to
force one language to do tasks that it doesn’t excel at and means that we don’t
need to reinvent the wheel, introducing redundancy between the languages. At
the time of writing it was not possible to access R functions from within Python
in reticulate. You may attempt to use reticulate for this task, but it
would be easier to pass an object back to R and execute R commands natively.

**Up and running with reticulate**

reticulate first appeared on CRAN in 2017, and has recently gained in
popularity as it matured. This package is developed by RStudio, and is well-
integrated into the RStudio IDE itself, which is pretty convenient. However, at
the time of writing, there are some troublesome features (bugs?) that require
some finesse (see the warning box “State of reticulate”). A good first step is to
ensure you are using the latest public release of RStudio and the latest version of
the reticulate package and any associated packages, such as knitr.

**STATE OF RETICULATE**

reticulate is well-supported and stable enough to be used in production. Nonetheless, you
may encounter issues depending on your system, and software versions. Since this tool
combines technologies, it can also be difficult to debug, and documentation is still somewhat
scarce. Stay up-to-date with new versions as they are released. If you encounter issues on your
local machine, call up our RStudio Cloud project.

In this section we’ll begin with two scripts, listed in Table 6-3. You’ll find these
in this chapter’s folder in the book’s repository.

*Table 6-3. Up and running with reticulate.*

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - Setup.Rmd</td>
<td>Setting up reticulate and virtual environments</td>
</tr>
<tr>
<td>1 - Activate.R</td>
<td>Activating a Python virtual environment</td>
</tr>
</tbody>
</table>
Let’s begin with the R script, `Setup.R`. Make sure you’ve installed `reticulate` and have initialized it in your environment:

```r
library(reticulate)
```

First, we need to specify which build of Python we’ll use. You can let R use your system default, or set the specific build of Python you want to use by going to `tools > Project options` and selecting the Python icon.
Let’s check to see the version we’re using:

```r
ticulate::py_config()
```

```
python: /usr/local/bin/python3.8
libpython: /Library/Frameworks/Python.framework/Versions/3.8...
pythonhome: /Library/Frameworks/Python.framework/Versions/3.8...
version: 3.8.6 (v3.8.6:db455296be, Sep 23 2020, 13:31:39) ...
numpy: [NOT FOUND]
sys: [builtin module]
```

To be clear, we don’t need to use RStudio to set the Python version. This is just a convenience feature. We could have executed:

```r
use_python("/usr/local/bin/python3.8", required = TRUE)
```

Note that this function just makes a suggestion and doesn’t result in an error if the desired build is not found unless the required argument is set to TRUE.

Before we proceed, we’ll want to establish a virtual environment. If you’re on Windows you’ll have to use a conda environment, which we’ll get to in a minute. For everyone else, use the following command to create a virtual environment called modern_data:

```r
virtualenv_create("modern_data")
```

Previously, when we used the venv package in Python, the virtual environment was stored as a hidden directory (typically called .venv in the project directory). So where are the Python virtual environments now? We can have a look with the following command:

```r
virtualenv_root()
```

[1] "~/./virtualenvs"

They are all stored in a hidden folder in the root directory. We can see all our virtual environment using the following command:
virtualenv_list()

THE RETICULATE CHEAT SHEET
As is the case for most popular data science packages, there is a cheat sheet available for reticulate. You can download it directly from here.

This is a departure from what we saw with virtual environments in Python, where they were stored within the project directory. Nonetheless, it’s convenient, since we can easily reuse a good environment for many projects.

Note that to remove a virtual environment, we need to pass the path, as such:

```r
dirr_remove("~/modern_data")
```

The next step is to install the appropriate packages.

```r
virtualenv_install("modern_data", "pandas")
```

Alternatively, you can use the tidyverse purrr::map() function to install many packages:

```r
library(tidyverse)
c("scikit-learn", "pandas", "seaborn") %>%
 map(~ virtualenv_install("modern_data", .))
```

If you’re on Windows, use the following commands:

```r
For windows users:
Install a minimal version of conda
install_miniconda()

List your conda virtual environments
conda_list()

Create a new virtual environment
conda_create("modern_data")

Install a single...
conda_install("modern_data", "scikit-learn")

#...or multiple packages:
library(tidyverse)
```
c("scikit-learn", "pandas", "seaborn") %>%
map(~ conda_install("modern_data", .))

The final step is to activate our virtual environment. This seems to be an area under rapid development. Different error messages, or none at all are produced depending on your versions of reticulate and RStudio, making them harder to debug. From my experience, your safest bet is to (i) make sure all your R packages, as well as RStudio, are up to date, and (ii) restart R before activating your virtual environment. You can do this in the RStudio menu Session > Restart R, the keyboard shortcut shift + cmd/ctrl + F10 or executing the command .rs.restartR(). You can also literally close and restart RStudio. This ensures that there is no Python build in active use and we can establish one from scratch. Thus, we have one R script for setup, where we create a virtual environment and install packages, and another with our actual analysis, where we load reticulate and activate our virtual environment.

```
library(reticulate)
use_virtualenv("modern_data", required = TRUE)

Alternatively, for miniconda:
use_miniconda("modern_data")
```

And finally we can confirm which build we have using:

```
py_config()
```

You should see the following output. Importantly, make sure that the path to your virtual environment is stated in the first line:

```
./virtualenvs/modern_data/bin/python.
```

```
python: /Users/user_name/.virtualenvs/modern_data/bin/python
libpython: /Library/Frameworks/Python.framework/Versions/3.8...
pythonhome: /Users/user_name/.virtualenvs/modern_data...
version: 3.8.6 (v3.8.6:db455296be, Sep 23 2020, 13:31:39)
numpy: /Users/user_name/.virtualenvs/modern_data/lib/python3.8/site-packages/numpy
numpy_version: 1.20.1
```

If you see something like /usr/local/bin/python3.8 then RStudio is
still directed to use the Python version you defined at the beginning of the chapter and not a virtual environment. This may serve you well, but it is preferable to use a virtual environment.

**Going deeper**

At this point, we’ve created a virtual environment, installed some packages in it, restarted R and have activated the virtual environment. These step are covered in the scripts 0 - Setup.R and 1 - Activate.R. For the rest of this section I’ll cover ways to pass information between R and Python, which I’ve summarized in Table 6-1.

**Table 6-4. Interoperability granted by reticulate.**

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 - Passing objects.Rmd</td>
<td>Pass objects between R and Python in an RMarkdown document</td>
</tr>
<tr>
<td>3 - Using functions.Rmd</td>
<td>Call Python in an RMarkdown document</td>
</tr>
<tr>
<td>4 - Calling scripts.Rmd</td>
<td>Call Python by sourcing a Python script</td>
</tr>
<tr>
<td>5 - Interactive mode.R</td>
<td>Call Python using a Python REPL console</td>
</tr>
<tr>
<td>6 - Interactive document.Rmd</td>
<td>Call Python with dynamic input in an interactive document</td>
</tr>
</tbody>
</table>

**NOTE**

Why “reticulate”? The reticulated python is a species of python found in Southeast Asia. They are the world’s longest snakes and longest reptiles. The species name, *Malayopython reticulatus*, is Latin meaning “net-like”, or reticulated, and is a reference to the complex colour pattern.

I’ll consider the scenarios in Table 6-1 in the subsections below. To follow along with these examples, please ensure that you have followed the setup and activation instructions found in 0 - Setup.R and 1 - Activate.R (both in the book code repository). You’ll need to have the modern_data virtual
environment and the above list of packages installed. If you’re using miniconda, be sure to use the correct command given in each file to activate your virtual environment.

**Pass objects between R and Python in an RMarkdown document**

The following commands can be found in the file 2 - Passing objects.Rmd. To access an R object in python use the r object, and to access a Python in R, use the py object. Consider the following chunks found in an RMarkdown document:

```python
a = 3.14
a
```

```r
py$a
```

The python object a is accessed in the R object py using the $ notation. In the opposite direction:

```r
b <- 42
b
```

```python
r.b
```

In Python, call the r object and use . notation to access R objects by name. These are scalars, or simple vectors, but of course we can pass more complex items directly between the two languages. reticulate will take care of object conversion for us. Consider the following case:

```r
A build-in data frame
An R data.frame is accessed as a Python pandas.DataFrame. However, if you don’t have pandas installed you’ll see a dict object, a Python dictionary.

A Python NumPy ndarray will be converted to an R `matrix`:

A Python NumPy ndarray as an R matrix:

Notice how the . notation in Python, iris.data is automatically accessible using the $ notation in R: py$iris$data. This holds true for nested objects, methods and attributes, just as they would in Python,

Call Python in an RMarkdown document

The following commands can be found in the file 3 - Using functions.Rmd. We’ll continue to use the classic iris dataset that we accessed in Python in the previous section. Inside an RMarkdown document, we’ll access a Python function, which allows us to access the trained support vector machine classifier to predict classification on new values. This is a very naïve machine learning workflow and is not intended to produce a valuable model. The point is to demonstrate how to access a model from Python in R.

The entire model configuration is defined here:
```python
# import modules
from sklearn import datasets
from sklearn.svm import SVC

# load the data:
iris = datasets.load_iris()

# Create an instance of the SVC, _Support Vector Classification_, class.
clf = SVC()

# Train the model by calling the fit method on the target data, using
target names
clf.fit(iris.data, iris.target_names[iris.target])

# Predict the class of new values, here the first three
clf.predict(iris.data[:3])
```

The method `clf.predict()` takes an `ndarray` as input and returns the
named classification. To access this function in R, we can once again use the `py` object, as in `pyclfpredict()`. The `iris` dataset in R is a `data.frame`,
where the 5th column is the classification. We must convert this to a Python
object using `r_to_py()`, in this case excluding the 5th column.

```r
py$clf$predict(r_to_py(iris[-5]))
```

Call Python by sourcing a Python script

The following commands can be found in the file 4 - Calling scripts.Rmd and 4b - Calling scripts.R. In this scenario we'll execute an entire Python script and access all object and functions available therein. To do this we can call:

```
source_python("SVC_iris.py")
```

This works just as well in an RMarkdown document as in a script.

Although this appears very similar to the previous section, there is a very important distinction. Python environments activated in this manner provide
functions and objects directly. Thus we can call:

```python
clf$predict(r_to_py(iris[-5]))
```

This is convenient, but also disconcerting. Not only has the syntax changes, i.e. no need for `py$`, but objects loaded in the R environment may conflict. Python objects will mask R objects, so be very careful about naming conflicts! You’ll notice that in `SVC_iris.py` we’ve renamed the Python `iris` dataset to `iris_py` to avoid problems when calling `iris` in R.

Call Python using the REPL

The following commands can be found in the file `5 - Interactive mode.R`. In this scenario we’ll start up a Python REPL console, using the following command:

```bash
repl_python()
```

NOTE

REPL stands for Read-eval-print loop. It is a common feature in many languages where the user can experiment in an interactive way, as opposed to writing a script that needs to be run.

This will allow you to directly execute Python commands in an interpreter. For example, try executing the commands we saw in the last example:

```python
from sklearn import datasets
from sklearn.svm import SVC
iris = datasets.load_iris()
clf = SVC()
clf.fit(iris.data, iris.target_names[iris.target])
clf.predict(iris.data[:3])
```

We can exit the interpreter by executing the Python `exit` command.

```python
exit
```

Just like we’ve seen before, the functions and objects in this Python environment
can be accessed in R. This is truly interactive programming, since we’re executing commands directly in the console. Although we present this scenario for the sake of completeness, \texttt{repl_python()} is not really meant to be used in everyday practice. Actually, it’s what is called when an RMarkdown chunk uses a Python kernel. So although you can do this, be cautious! This presents a considerable problem in reproducibility and automation, but you may find it useful for quickly checking some commands.

Call Python with dynamic input in an interactive document

The following commands can be found in the file 6 - Interactive document.Rmd.

By now we’ve see all the core functionality of reticulate. Here we’ll go beyond that and show a very simple way to introduce interactivity using a \texttt{shiny} runtime in an RMarkdown document. To see the interactivity, make sure you have the \texttt{shiny} package installed and the you render the document to HTML. In RStudio, you can do this by clicking on the “Run Document” button when the file is open.

First, in the header of our document we need to specify this new runtime environment:

```yaml
---
  title: "Python & R for the Modern Data Scientist"
  subtitle: "A bilingual case study"
  runtime: shiny
---
```

The following Python code, which we’ve seen above, is executed in a Python chunk:

```
```{python}
 from sklearn import datasets
 from sklearn.svm import SVC
 iris = datasets.load_iris()

 clf = SVC()
 clf.fit(iris.data, iris.target_names[iris.target])
```

```
In the final two chunks we use functions from the `shiny` package to (i) produce sliders for each of the four features, and (ii) render the output from `pyclfpredict()` as HTML text, e.g.:

```r
sliderInput("sl", label = "Sepal length:",
            min = 4.3, max = 7.9, value = 4.5, step = 0.1)
```

and... n

```r
prediction <- renderText({
  py$clf$predict(
    r_to_py(
      data.frame(
        sl = input$sl,
        sw = input$sw,
        pl = input$pl,
        pw = input$pw)
    ))
})
```

Finally, we call the R object `prediction` as an in-line command, `r prediction` to print the result to the screen as a sentence.

Final thoughts

In this chapter we’ve covered the core components of the `reticulate` package, progressing from the essential setup to the basics and finally a simple yet powerful implementation that showcases the strengths R, Python and `reticulate`. Using this knowledge we’ll continue onto a larger case study in the last chapter.

1 Recall that rhs is the right-hand side and lhs is the left-hand side when calling operators, in this case `<`

2 In these tables we make a distinction between functions and objects. Recall that functions are themselves just objects, but we don’t need to worry about these details at the moment.

3 Refer the Appendix A for a summary of data structures.
Chapter 7. A Case Study in Bilingual Data Science

Rick J. Scavetta
Boyan Angelov

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

In this final chapter, our goal is to present a case study that demonstrates a sample of all the concepts and tools we’ve shown throughout this book. Although data science provides a practically overwhelming diversity of methods and applications, we typically rely on a core toolkit in our daily work. Thus, it’s unlikely that you’ll make use of all the tools presented in this book (or this case study, for that matter). But that’s alright! We hope that you’ll focus on those parts of the case study that are most relevant to your work and that you’ll be inspired to be a modern, bilingual data scientist.

24 years and 1.88 million wildfires

Our case study will focus on the US Wildfires dataset. This dataset, released by the US Department of Agriculture (USDA), contains 1.88 million georeferenced wildfire records. Collectively, these fires have resulted in the loss of 140 million acres of forest over 24 years. If you want to execute the code in this chapter, download the SQLite data set from the USDA website directly or from Kaggle. Some preprocessing has already been performed, e.g., duplicate removal.

There are 39 features, plus another shape variable in raw format. Many of these are unique identifiers or redundant categorical and continuous representations.
Thus, to simplify our case study, we’ll focus on a few features listed in Table 7-1.

*Table 7-1. The *fires* table contains 39 features describing over 1.88 million wildfires in the US from 1992-2015*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT_CAUSE_DESCR</td>
<td>Cause of the fire (The target variable)</td>
</tr>
<tr>
<td>OWNER_CODE</td>
<td>Code for primary owner of the land</td>
</tr>
<tr>
<td>DISCOVERY_DOY</td>
<td>Day of year of fire discovery or confirmation</td>
</tr>
<tr>
<td>FIRE_SIZE</td>
<td>Estimate of the final fire size (acres)</td>
</tr>
<tr>
<td>LATITUDE</td>
<td>Latitude (NAD83) of the fire</td>
</tr>
<tr>
<td>LONGITUDE</td>
<td>Longitude (NAD83) of the fire</td>
</tr>
</tbody>
</table>

We’ll develop a classification model to predict the cause of a fire (STAT_CAUSE_CODE) using the five other features as features. The target and the model are secondary; this is not an ML case study. Thus, we’re not going to focus on details such as cross-validation or hyperparameter tuning. We’ll also limit ourselves to observations from 2015 and exclude Hawaii and Alaska to reduce the data set to a more manageable size. The end product of our case study will be to produce an interactive document that will allow us to input new predictor values, as depicted in Figure 7-1.

Before we dig in, it’s worth taking a moment to consider data lineage - from raw to product. Answering the following questions will help orientate us.

1. What is the end product?
2. How will it be used, and by whom?
3. Can we break down the project into component pieces?
4. How will each component be built? i.e., Python or R? Which additional packages may be necessary?
5. How will these component pieces work together?

Answering these questions allows us to draw a path from the raw data to the end product, hopefully avoiding bottlenecks along the way. For question 1, we’ve already stated that we want to build an interactive document. For the second question, to keep things simple, let’s assume it’s for us to easily input new feature values and see the model’s prediction.

Questions 3-5 are what we’ve considered in this book. In question 3, we imagine the parts as a series of steps for our overall workflow. Question 4 was addressed in Chapter 4 and Chapter 5. We summarize those steps in Table 7-2.

Table 7-2. The steps in our case study and their respective languages.

<table>
<thead>
<tr>
<th>Component/Step</th>
<th>Language</th>
<th>Additional packages?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Data Importing</td>
<td>R</td>
<td>RSQlIt, DBI</td>
</tr>
<tr>
<td>2. EDA & Data Visualization</td>
<td>R</td>
<td>ggplot2, GGally, visdat, nanair</td>
</tr>
<tr>
<td>4. Feature Engineering</td>
<td>Python</td>
<td>scikit-learn</td>
</tr>
<tr>
<td>5. Machine Learning</td>
<td>Python</td>
<td>scikit-learn</td>
</tr>
<tr>
<td>6. Mapping</td>
<td>R</td>
<td>leaflet</td>
</tr>
<tr>
<td>7. Interactive web interface</td>
<td>R</td>
<td>shiny runtime in an RMarkdown</td>
</tr>
</tbody>
</table>

Finally, question 5 asks us to consider the project architecture. The diagram presented in Figure 7-1 shows how each of the steps in Table 7-2 will be linked together.
Dashboard frontend

- User input
- Visualizations
- Map

ML inference system: dmlc, XGBoost, mlpack, learn

Dashboard backend: Shiny

ML training system: recluster
Alright, now that we know where we’re going, let’s choose our tools with care and assemble all the components into a unified whole.

NOTE
We prepared this case study exclusively using the RStudio IDE. As we discussed in the Chapter 6, if we’re writing in R and accessing Python functions, this would be the way to go. The reason is the built-in capabilities in executing Python code chunks within RMarkdown, the features of the Environment and Plot panes, and finally, the tooling around shiny.

Setup and data import

We can see from our diagram that our end product will be an interactive RMarkdown document. So let’s begin as we have done in Chapter 5. Our YAML header will consist of at least:

title: "R & Python Case Study"
author: "Python & R for the modern data scientist"
runtime: shiny

NOTE
To have nicer formatting, we’ll exclude the characters specifying an RMarkdown chunk from the following examples. Naturally, if you are following along, you need to add them.

Since the data is stored in an SQLite database, we need to use some additional packages in addition to ones we’ve already seen. Our first code chunk is:

```r
library(tidyverse)
library(RSQLite) # SQLite
library(DBI) # R Database Interface
```

In our second code chunk, we’ll connect to the database and list all of the 33 available tables.
Connect to an in-memory RSQLite database
con <- dbConnect(SQLite(), "ch07/data/FPA_FOD_20170508.sqlite")

Show all tables
dbListTables(con)

Creating a connection (con) object is a standard practice in establishing programmatic access to databases. In contrast to R, Python has built-in support for opening such files with the sqlite3 package. This is preferable to R since we don’t need to install and load two additional packages. Nonetheless, R is a core language for the initial steps, so we might as well just import the data in R from the outset.

Our data is stored in the Fires table. As we know the columns we want to access, we can specify that while importing.

It’s also important to remember to close the connections when working with remote or shared databases, since that might prevent other users from accessing the database and cause issues.

fires <- dbGetQuery(con, "
SELECT
 STAT_CAUSE_DESCR, OWNER_CODE, DISCOVERY_DOY,
 FIRE_SIZE, LATITUDE, LONGITUDE
FROM Fires
WHERE (FIRE_YEAR=2015 AND STATE != 'AK' AND
STATE != 'HI');")
dbDisconnect(con)

dim(fires)

We limit our dataset size already at this very first importing step. It’s a shame to throw out so much data. Still, we do this since older data, especially in climate applications, tends to be less representative of the current or near-future situation. Predictions based on old data can be inherently biased. By limiting the size of the data set, we also reduce the amount of memory used, improving performance.

PERFORMANCE TIP
Often in the case of enormous datasets (those barely or not fitting into the memory of your
We can get a quick preview of the data using the tidyverse function `dplyr::glimpse()`:

```r
glimpse(fires)
```

```
Rows: 73,688
Columns: 6
$ STAT_CAUSE_DESCR <chr> "Lightning", "Lightning", "Lightning", "Lightning", "Misc... $ OWNER_CODE <dbl> 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 8, 5, 8, 5, 5, 5, 5, ...
$ DISCOVERY_DOY <int> 226, 232, 195, 226, 272, 181, 146, 219, 191, 192, 191, 19... $ FIRE_SIZE <dbl> 0.10, 6313.00, 0.25, 0.10, 0.10, 0.25, 0.10, 0.10, 0.50, ... $ LATITUDE <dbl> 45.93417, 45.51528, 45.72722, 45.45556, 44.41667, 46.0522... $ LONGITUDE <dbl> -113.0208, -113.2453, -112.9439, -113.7497, ...```

**EDA & Data Visualization**

Since the dataset is still relatively large, we should think carefully about the best data visualization strategy. Our first instinct may be to plot a map since we have latitude and longitude coordinates. This can be fed into `ggplot2` directly as x and y-axis coordinates as such:

```r
g <- ggplot(fires, aes(x = LONGITUDE,
 y = LATITUDE,
 size = FIRE_SIZE,
 color = factor(OWNER_CODE))) +
geom_point(alpha = 0.15, shape = 16) +
scale_size(range = c(0.5, 10)) +
theme_classic() +
theme(legend.position = "bottom",
 panel.background = element_rect(fill = "grey10"))
g
```
By mapping `OWNER_CODE` onto the color aesthetic, we can see a strong correlation in some states. We can predict that this will have a substantial effect on our model’s performance. In the above code snippet, we assigned the plot to the object `g`. This is not strictly necessary, but we did it in this case to showcase the strength of the `ggplot2` layering method. We can add a `facet_wrap()` layer to this plot and separate it into 13 facets, or *small multiples*, one for each type of `STAT_CAUSE_DESCR`.

```r
 g +
 facet_wrap(facets = vars(STAT_CAUSE_DESCR), nrow = 4)
```
This allows us to appreciate that some causes are abundant while others are rare, an observation we’ll see again shortly in a different way. We can also begin to assess any strong associations between, e.g., region, owner code, and cause of a fire.

Returning to the entirety of the data set, an easy way to get a comprehensive overview is to use a pairs plot, sometimes called a splom (or “scatter plot matrix” if it consists of purely numeric data). The GGally package provides an exceptional function, `ggpairs()` that produces a matrix of plots. Each pair-wise bi-variate plot is shown as univariate density plots or histograms on the diagonal. In the upper triangle, the correlation between continuous features is available.

```r
library(GGally)
fires %>%
 ggpairs()
```
This information-rich visualization demands some time to process. It’s handy as an exploratory plot, in EDA, but not necessarily as an explanatory in reporting our results. Can you spot any unusual patterns? First, STAT_CAISE_DESCR looks imbalanced\(^7\), meaning there is a significant difference between the number of observations per class. Additionally, OWNER_CODE appears to be bimodal (having two maxima). Those properties can negatively affect our analysis depending on which model we choose. Second, all correlations seem to be relatively low, making our job easier (since correlated data is not good for ML). Still, we already know there is a strong association between location (LATITUDE & LONGITUDE) and OWNER CODE from our previous plot. So we should take these correlations with a grain of salt. We would expect to detect this issue in feature engineering. Third, FIRE_SIZE has a very unusual distribution. It looks like that plot is empty, with just the x and y axes present. We see a density plot with a very high and narrow peak at the very low range and an extremely long positive skew. We can quickly generate a \texttt{log10} transformed density plot:

```
\texttt{ggplot(fires, aes(FIRE_SIZE)) + geom_density() + scale_x_log10()}
```
Figure 7-5. Density plot of the log-transformed FIRE_SIZE feature.

ADDITIONAL VISUALIZATIONS

For the case study, we’ll keep the tasks to a minimum, but there might be a few other interesting things to visualize that can help tell a story for the end-user. For example, note that the dataset has a temporal dimension. It would be interesting how forest fires’ quantity (and quality) has been changing over time. We’ll leave this to the motivated user to explore with the excellent gganimate package.

Interactive data visualization is often overused, without a special purpose in mind. Even for the most popular packages, the documentation shows just basic usage. In our case, since we have so many data points in a spatial setting, and we want to have a final deliverable that is accessible, creating an interactive map is an obvious choice. As in Chapter 5 we use leaflet:

```r
library(leaflet)

leaflet() %>%
 addTiles() %>%
 addMarkers(lng = df$LONGITUDE, lat = df$LATITUDE,
 clusterOptions = markerClusterOptions()
)
```
Note how using `clusterOptions` allows us to simultaneously present all of the data without overwhelming the user or reducing visibility. For our purposes, this satisfies our curiosity using some great visualizations in EDA. There are plenty of other statistics we can apply, but let’s move machine learning in Python.

**Machine Learning**

By now, we have some idea about the factors that may influence the cause of a fire. Let’s dive into building a machine learning model using `scikit-learn` in Python⁸.

We argued that ML is best done in Python as we saw in Chapter 5. We’ll use a Random Forest algorithm. There are several reasons for this choice:
1. It’s a well-established algorithm
2. It’s relatively easy to understand
3. It does not require feature scaling before training

There are other reasons why it’s good, such as working well with missing data and having out-of-the-box explainability.

**Setting up our Python Environment**

As discussed in Chapter 6, there are a few ways to access Python using the `reticulate` package. The choice depends on the circumstances, which we laid out in our project architecture. Here, we’ll pass our R `data.frame` to a Python virtual environment. If you followed the steps in Chapter 6, you’d already have the `modern_data` virtual environment set up. We already installed some packages into this environment. To recap, we executed the following commands:

```r
library(reticulate)

Create a new virtualenv
virtualenv_create("modern_data")

Install Python packages into this virtualenv
library(tidyverse)
c("scikit-learn", "pandas", "seaborn") %>%
purrr::map(~ virtualenv_install("modern_data", .))
```

If you don’t have the `modern_data` virtualenv or you’re using Windows, please refer to the steps in the files `0 - setup.R` and `1 - activate.R` and discussed in Chapter 6. You may want to restart R at this point to make sure that you’ll be able to activate your virtual environment using the following command:

```r
Activate virtual environment
use_virtualenv("modern_data", required = TRUE)

If using miniconda (windows)
use_condaenv("modern_data")
```
We’ll include all the Python steps into a single script; you can find this script in the book repository under ml.py. First, we’ll import the necessary modules.

```python
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn import metrics
```

## Feature engineering

There are features in the dataset that might be informative to a data analyst but are at best useless for training the model, and at worst - can reduce its accuracy. This is called “adding noise” to the dataset, and we want to avoid it at all costs. This is the purpose behind feature engineering. Let’s select just the features we need, as specified in Table 7-1. We also use standard ML convention in storing them in X, and our target in ‘y’.

```python
features = ['OWNER_CODE', 'DISCOVERY_DOY', 'FIRE_SIZE', 'LATITUDE', 'LONGITUDE']
X = df[features]
y = df['STAT_CAUSE_DESCR']
```

Here, we create an instance of the LabelEncoder. We use this to encode a categorical feature to numeric. In our case, we apply it to our target:

```python
le = LabelEncoder()
y = le.fit_transform(y)
```

Here, we split the dataset into a training and a test set (note that we are also using the handy stratify parameter to make sure the splitting function samples our imbalanced classes fairly):

```python
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.33,
stratify=y)
```

## Model training

To apply the Random Forest classifier, we’ll make an instance of
RandomForestClassifier. As in Chapter 5 we use the fit/predict paradigm and store the predicted values in `preds`:

```python
clf = RandomForestClassifier()
clf.fit(X_train, y_train)
preds = clf.predict(X_test)
```

In the final step, we’ll assign the confusion matrix and the accuracy score to objects.

```python
conmat = metrics.confusion_matrix(y_test, preds)
acc = metrics.accuracy_score(y_test, preds)
```

After we have complete our script, we can source it into R:

```r
source_python("ml.py")
```

After running this command, we’ll have access to all the Python objects directly in our environment. The accuracy is 0.58, which is not phenomenal, but certainly much better than random!

---

**THE POWER OF SOURCING PYTHON SCRIPTS**

When we use the `source_python` function from reticulate we can significantly increase our productivity, especially if we are working in a bilingual team. Imagine the scenario when a coworker of yours builds the ML part in Python and you need to include their work in yours. It would be as easy as sourcing without worrying about re-coding everything. This scenario is also plausible when joining a new company or project and inheriting Python code that you need to use straight away.

---

If we want to take advantage of ggplot to examine the confusion matrix, we first need to convert to an R `data.frame`. The value is then the number of observations of each case, which we map onto `size`, and change the `shape` to 1 (a circle). The result is shown on Figure 7-7.

```r
library(ggplot2)
py$conmat %>%
```
as.data.frame.table(responseName = "value") %>%
ggplot(aes(Var1, Var2, size = value)) +
geom_point(shape = 1)

Figure 7-7. Plot of the classifier confusion matrix.

It’s not surprising that we have some groups with a very high match since we already knew that our data was imbalanced to begin with. Now, what do we do with this nice Python code and output? At the end of Chapter 6, we saw a simple and effective way to create an interactive document (remember what you learned in Chapter 5) using an RMarkdown with a shiny runtime. Let’s implement the same concept here.

Prediction and UI
Once we have established a Python model, it’s general practice to test it with mock input. This allows us to ensure our model can handle the correct input data and is standard practice in ML engineering before connecting it with real user input. To this end, we’ll create five `sliderInputs` for the five features of our model. Here, we’ve hard-coded the min and max values for the sake of simplicity, but these can, of course, be dynamic.

```r
sliderInput("OWNER_CODE", "Owner code:",
 min = 1, max = 15, value = 1)
sliderInput("DISCOVERY_DOY", "Day of the year:",
 min = 1, max = 365, value = 36)
sliderInput("FIRE_SIZE", "Number of bins (log10):",
 min = -4, max = 6, value = 1)
sliderInput("LATITUDE", "latitude:",
 min = 17.965571, max = 48.9992, value = 30)
sliderInput("LONGITUDE", "Longitude:",
 min = -124.6615, max = -65.321389, value = 30)
```

Similar to what we did at the end of Chapter 6, we’ll access these values in the internal `input` list and use a `shiny` package function to render the appropriate output.

```r
prediction <- renderText({
 input_df <- data.frame(OWNER_CODE = input$OWNER_CODE,
 DISCOVERY_DOY = input$DISCOVERY_DOY,
 FIRE_SIZE = input$FIRE_SIZE,
 LATITUDE = input$LATITUDE,
 LONGITUDE = input$LONGITUDE)

 clf$predict(r_to_py(input_df))
})
```
Case Study

A bilingual case study
Python & R for the Modern Data Scientist

Click through the tabs to explore our results

<table>
<thead>
<tr>
<th>Setup</th>
<th>Data</th>
<th>Model</th>
<th>Results</th>
<th>Prediction</th>
</tr>
</thead>
</table>

Sliders for prediction:

**Owner code:**

![Slider for owner code]

**Day of the year:**

![Slider for day of the year]

**Number of bins (log10):**

![Slider for number of bins]

**Latitude:**

![Slider for latitude]

**Longitude:**

![Slider for longitude]

The fire cause code is 4.

*Figure 7-8. The result of our case study.*

Those elements will respond dynamically to changes in user input. This is precisely what we need for our work since this is an interactive product and not a static one. You can see all of the different code blocks that we used in
preparation for this project. They should require little change, with the most notable one being the ability to capture the user input in the inference part. This can be done by accessing the input object.

**Final thoughts**

In this case study, we demonstrated how one could take the best of both worlds and combine such excellent tools that modern data scientists have at our disposal to create remarkable user experiences, which delight visually and inform decision-making. This is but a basic example of such an elegant system, and we are confident that by showing you what’s possible, you - our readers - will create the data science products of the future!

---


2 We’ll leave a thorough development of a robust classification model to our motivated readers. Indeed you may also be interested in a regression that predicts the final fire size in acres. Curious readers will note that a few interesting notebooks are available on Kaggle to get you started.

3 This is a far cry from developing, hosting, and deploying robust ML models, which, in any case, is not the focus of this book.

4 Some readers might not be familiar with this language. It is commonly used to specify configuration options as code, such as in this case.

5 This part can also be done very well within R, by using packages such as dbplyr or the using the Connections panel in RStudio.

6 This package is used to extend the ggplot2 functionality for transformed datasets.

7 As another example of the modularity of the Python ML ecosystem have a look at the imbalanced-learn package here if you are looking for a solution to this.

8 This is not a thorough exposition of all possible methods or optimizations since our focus is on building a bilingual workflow, not exploring machine learning techniques in detail. Readers may choose to refer to the official scikit-learn documentation for further guidance, in the aptly named “Choosing the right estimator”
Appendix A. Appendix A

The appendix is currently available at https://scavetta.academy/PyR4MDS.
About the Authors

Rick Scavetta has worked as an independent workshop trainer, freelance data scientist and co-founder since 2012. Operating as Scavetta Academy, Rick has a close and recurring presence at primary research institutes across Germany. His online courses at DataCamp have been taken by over 200,000 students since 2016 and he’s also contributed to advanced data science courses for O’Reilly and Manning. Rick currently serves as the technical curriculum advisor to the Misk Academy in Saudi Arabia and heads the development of their Data Science programme.

Boyan Angelov is a Data Strategist and consultant with a decade of experience in a variety of academic and industry environments, covering topics such as bioinformatics, clinical trials, HRTech, and management consulting. He is additionally a contributor to open source scientific projects in the field of xAI, and speaks regularly at conferences and meetups.
Colophon

The animal on the cover of *FILL IN TITLE* is *FILL IN DESCRIPTION*.

Many of the animals on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving from *FILL IN CREDITS*. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.
1. Preface
   a. Why we wrote this book
   b. Technical interactions
   c. Who this book is for
   d. Prerequisites
   e. How this book is organized
   f. Let’s talk
   g. Conventions Used in This Book
   h. Using Code Examples
   i. O’Reilly Online Learning
   j. How to Contact Us
   k. Acknowledgments

2. I. Discovery of a new language

3. 1. In the Beginning
   a. The origins of R
   b. The origins of Python
   c. The language war begins
   d. The battle for data science dominance
   e. A convergence on cooperation and community-building
   f. Final thoughts

4. II. Bilingualism I: Learning a new language

5. 2. R for Pythonistas
   a. Up and running with R
b. Projects and packages

c. The triumph of tibbles

d. A word about types and exploring

e. Naming (internal) things

f. Lists

g. The facts about factors

h. How to find… stuff

i. Reiterations redo

j. Final thoughts

6. 3. Python for useRs

a. Versions and builds

b. Standard tooling

   i. Text editors

c. Virtual environments

d. Installing packages

   i. Notebooks

e. How does Python, the language, compare to R?

   i. Import a dataset

   ii. Examine the data

f. Data Structures & Descriptive Statistics

   i. Data structures: Back to the basics

   ii. Indexing and Logical Expressions

   iii. Plotting
g. Inferential statistics
h. Final thoughts

7. III. Bilingualism II: The modern context

8. 4. Data Format Context
   a. External versus base packages
   b. Image data
      i. OpenCV and scikit-image
   c. Text data
      i. NLTK and spaCy
   d. Time series data
      i. Base R
         ii. prophet
   e. Spatial data
      i. raster
   f. Final thoughts

9. 5. Workflow Context
   a. Defining workflows
   b. Exploratory data analysis
      i. Static visualizations
         ii. Interactive visualizations
   c. Machine learning
   d. Data engineering
   e. Reporting
i. Static reporting

ii. Interactive reporting

f. Final thoughts

10. IV. Bilingualism III: Becoming synergistic

11. 6. Using the Two Languages Synergistically

a. Faux-operability

b. Interoperability

i. Up and running with reticulate

c. Going deeper

i. Pass objects between R and Python in an RMarkdown document

ii. Call Python in an RMarkdown document

iii. Call Python by sourcing a Python script

iv. Call Python using the REPL

v. Call Python with dynamic input in an interactive document

d. Final thoughts

12. 7. A Case Study in Bilingual Data Science

a. 24 years and 1.88 million wildfires

b. Setup and data import

c. EDA & Data Visualization

d. Machine Learning

i. Setting up our Python Environment

ii. Feature engineering
iii. Model training

e. Prediction and UI

f. Final thoughts

13. A. Appendix A

14. Index